Materials science research has expanded significantly in recent years; a multidisciplinary field, home to an ever-growing number of chemists. However, our general chemistry degree courses have not changed to reflect the rise in interest in this topic. In this paper, we propose a laboratory experiment for the undergraduate chemistry practical course, which may serve as a hands-on introduction to this field. The experiment involves the synthesis and characterization of magnetic materials via commonly employed techniques in materials science. Students begin by producing three metal ferrite spinels using a sol-gel combustion synthesis. They must then characterize the differing magnetic properties across their three samples using a magnetic susceptibility balance. In the second part of the experiment, students must create a ferrofluid via coprecipitation, from which they may observe the phenomenon of "spiking" in response to an external magnet. Additional data such as X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images corresponding to these materials are also provided, and students are tasked with the interpretation of these data in their writeup report. Upon completion, students should gain a new-found understanding of materials science and its fundamental overlap with chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269328PMC
http://dx.doi.org/10.1021/acs.jchemed.3c00121DOI Listing

Publication Analysis

Top Keywords

materials science
16
undergraduate chemistry
8
materials
5
introducing materials
4
science
4
science experimenting
4
magnetic
4
experimenting magnetic
4
magnetic nanomaterials
4
nanomaterials undergraduate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!