Identifying critical residues in protein-protein binding and efficiently designing stable and specific protein binders to target another protein is challenging. In addition to direct contacts in a protein-protein binding interface, our study employs computation modeling to reveal the essential network of residue interaction and dihedral angle correlation critical in protein-protein recognition. We propose that mutating residues regions exhibited highly correlated motions within the interaction network can efficiently optimize protein-protein interactions to create tight and selective protein binders. We validated our strategy using ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complexes, where Ub is one central player in many cellular functions and PLpro is an antiviral drug target. Molecular dynamics simulations and experimental assays were used to predict and verify our designed Ub variant (UbV) binders. Our designed UbV with 3 mutated residues resulted in a ~3,500-fold increase in functional inhibition, compared with the wild-type Ub. Further optimization by incorporating 2 more residues within the network, the 5-point mutant achieved a K of 1.5 nM and IC of 9.7 nM. The modification led to a 27,500-fold and 5,500-fold enhancements in affinity and potency, respectively, as well as improved selectivity, without destabilizing the UbV structure. Our study illustrates the importance of residue correlation and interaction networks in protein-protein interaction and introduces a new approach that can effectively design high affinity protein binder for cell biology studies and future therapeutic solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274944 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2869897/v1 | DOI Listing |
Plants (Basel)
January 2025
KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China.
Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
The recent coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exerted considerable impact on global health. To prepare for rapidly mutating viruses and for the forthcoming pandemic, effective therapies targeting the critical stages of the viral life cycle need to be developed. Viruses are dependent on the interaction between the receptor-binding domain (RBD) of the viral Spike (S) protein (S-RBD) and the angiotensin-converting enzyme 2 (ACE2) receptor to efficiently establish infection and the following replicate.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!