Temporal lobe (TL) epilepsy is the most common form of drug-resistant epilepsy. A major focus of human and animal studies on TLE network has been the limbic circuit and the structures composing the temporal lobe. However, there is also evidence suggesting an active role of the basal ganglia in the propagation and control of temporal lobe seizures. Evidence suggests that the network involved in temporal lobe seizure may depend on their onset and offset pattern but studies on the relationship between the patterns and extralimbic activity are limited. Here, we characterize the involvement of the substantia nigra (SN) and somatosensory cortex (SI) during temporal lobe seizures induced in two nonhuman primates (NHP). The seizure onset and offset patterns were manually classified and spectral power and coherence were calculated. We then analyzed the three first and last seconds of the seizure as well as 3-second segments of recorded in pre-ictal and post-ictal periods and compared the changes based on the seizure onset and offset patterns. Our results demonstrated an involvement of the SN and SI dependent on the seizure onset and offset pattern. We found that seizures with both low amplitude fast activity (LAF) and high amplitude slow activity (HAS) onset patterns were associated with an increase in activity of the SN while the change in activity was limited to LAF seizures in the SI. However, the increase of HPC/SI coherence was similar for both type of onset, while the increase in HPC/SN coherence was specific to the farther-spreading LAF onset pattern. As for the role of the SN in seizure cessation, we observed that the coherence between the HPC/SN was reduced during burst suppression (BS) compared to other termination phases. Additionally, we found that this coherence returned to normal levels after the seizure ended, with no significant difference in post-ictal periods among the three types of seizure offsets. This result suggests that the SN might be involved differently in the termination of the BS seizure pattern. This study constitutes the first demonstration of temporal lobe seizures entraining the SN in the primate brain. Moreover, these findings provide evidence that this entrainment is dependent on the seizure onset pattern and support the hypothesis that the SN might play a role in the maintenance and termination of some specific temporal lobe seizure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274660 | PMC |
http://dx.doi.org/10.1101/2023.06.04.543608 | DOI Listing |
Biomedicines
December 2024
Department of Neurosurgery, Freiburg University Medical Center, Breisacher Str. 64, 79106 Freiburg, Germany.
Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Medical School, Universidad de las Américas (UDLA), Quito 170124, Ecuador.
The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE.
View Article and Find Full Text PDFBrain Sci
November 2024
Clinical Neuroanatomy, Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany.
Creativity and the production of artwork can have an impact on the course and treatment of comorbid severe mental illness and neurodegeneration. We report on a 70-year-old male patient with highly original artistic behavior, who suffered from lifelong recurrent major depression and subsequently developed symptoms of progressive bulbar palsy (PBP). In the context of a systematic literature review, we detail the patient's personal and artistic biographies and portray artwork from his artistic portfolio together with his disease history, clinical examination, psychopathological and neuropsychological evaluations, blood and cerebrospinal fluid analyses, neuroimaging, neurophysiological testing, and psychotherapeutic treatment.
View Article and Find Full Text PDFCurr Biol
January 2025
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:
Pup odors and vocalizations integrate in the auditory cortex. A new study reveals that odor information is relayed to the auditory cortex by the basal amygdala and the activity of this projection enhances sound responses in females with pup experience.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA.
The present study examines whether structural and functional variability in medial temporal lobe (MTL) neocortical regions correlate with individual differences in episodic memory and longitudinal memory change in cognitively healthy older adults. To address this question, older adults were administered a battery of neuropsychological tests on three occasions: the second occasion one month after the first test session, and a third session three years later. Structural and functional MRI data were acquired between the first two sessions and included an in-scanner associative recognition procedure enabling estimation of MTL encoding and recollection fMRI BOLD effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!