The successful integration of engineered gene circuits into host cells remains a significant challenge in synthetic biology due to circuit-host interactions, such as growth feedback, where the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures and identifying topologies resilient to growth feedback are crucial for both fundamental and applied research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we systematically study more than four hundred topological structures and uncover various categories of failures. Three dynamical mechanisms of circuit failures are identified: continuous deformation of the response curve, strengthened or induced oscillations, and sudden switching to coexisting attractors. Our extensive computations also uncover a scaling law between a circuit robustness measure and the strength of growth feedback. Despite the negative effects of growth feedback on the majority of circuit topologies, we identify several circuits that maintain optimal performance as designed, a feature important for applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274713PMC
http://dx.doi.org/10.1101/2023.06.06.543915DOI Listing

Publication Analysis

Top Keywords

growth feedback
20
effects growth
8
gene circuits
8
circuit failures
8
feedback
5
growth
5
circuit
5
feedback adaptive
4
adaptive gene
4
circuits
4

Similar Publications

Objectives: Emergency medical services (EMS) clinicians express dissatisfaction with the quality and quantity of clinical feedback received from hospitals, which is exacerbated by the absence of standardized feedback processes. A reported lack of regular feedback impedes their ability to learn and improve care. We evaluated a newly implemented feedback tool's utilization and perceived impact on EMS clinicians and our health system.

View Article and Find Full Text PDF

The positive feedback loop between SP1 and MAP2K2 significantly drives resistance to VEGFR inhibitors in clear cell renal cell carcinoma.

Int J Biol Sci

January 2025

Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.

Clear cell renal cell carcinoma (ccRCC) is one of the most common and aggressive malignancies of the urinary system. Despite being the first-line treatment for advanced ccRCC, vascular endothelial growth factor receptor inhibitors (VEGFRis) face significant limitations due to both initial and acquired resistance, which impede complete tumor eradication. Using a CRISPR/Cas9 library screening approach, was identified as a resistance-associated gene for three prevalent VEGFRis (Sunitinib, Axitinib, and Sorafenib).

View Article and Find Full Text PDF

Since 1999, every report released by the International Panel on Climate Change has advocated a decrease in the greenhouse gas emissions associated with aviation in order to preserve the current climate. This study used a two variable differential equations model with a non-linear control term to address several aspects of the emissions stabilization issue. By optimizing the control term parameter, several management alternatives can be obtained based on the properties of the phase plane of the model solutions, as identified by a stability analysis.

View Article and Find Full Text PDF

Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory HO may entrain negative feedback regulation of GOX in an age-dependent manner.

View Article and Find Full Text PDF

Glioblastoma (GBM) characterized byits rapid progression and challenging prognosis, often featuring mutations in the Kirsten rat sarcoma virus (KRAS) gene, which is crucial for numerous cellular signaling mechanisms. Emerging research underscores a significant interaction between KRAS and microRNAs (miRNAs) in these cancers, with miRNAs playing key roles as both regulators and mediators within the KRAS signaling framework. The concept of oncogene-induced senescence (OIS) is explored as a protective mechanism against tumor development, examining how K-RAS signaling is meticulously adjusted to bypass senescence, thereby enhancing cell growth and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!