Bacterial mimicry of eukaryotic HECT ubiquitin ligation.

bioRxiv

Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.

Published: June 2023

HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic and Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274628PMC
http://dx.doi.org/10.1101/2023.06.05.543783DOI Listing

Publication Analysis

Top Keywords

eukaryotic hect
8
hect ubiquitin
8
polyub specificity
8
bhect family
8
bhect
6
bacterial mimicry
4
mimicry eukaryotic
4
hect
4
ubiquitin ligation
4
ligation hect
4

Similar Publications

Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR.

Clin Transl Med

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.

Background: Vitamin K-dependent γ-glutamic acid carboxylation (Gla) proteins are calcium-binding and membrane-associated, participating in coagulation, bone turnover, and cancer biology. The molecular function of transmembrane proline-rich Gla proteins (PRRGs) remains unexplored.

Methods: Analysis of pancreatic ductal adenocarcinoma (PDAC) datasets, including transcription profiles, clinical data, and tissue microarrays, was conducted to evaluate PRRG1 expression and its clinical relevance.

View Article and Find Full Text PDF

HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability.

Neuromolecular Med

January 2025

Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.

Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated.

View Article and Find Full Text PDF

This research seeks to investigate the function and fundamental mechanisms of Itchy E3 ubiquitin ligase (ITCH), a HECT (homologous to E6AP carboxyl terminus)-type E3 ubiquitin ligase, in endothelial ferroptosis, particularly in the context of atherosclerosis, which has been underexplored. The levels of ITCH protein in the aortas of mice with atherosclerosis were analyzed. Constructs for ITCH RNA interference were generated and introduced into human aortic endothelial cells (HAECs).

View Article and Find Full Text PDF

Ethylene is an important plant hormone whose production relies on the action of key enzymes, one of which is 1-aminocyclopropane-1-carboxylate synthase (ACS). There are three classes of ACS, which are all partially regulated by degradation through the ubiquitin-proteasome system (UPS), which regulates ethylene production. Arabidopsis has a single class III ACS, ACS7, but although it is known to be degraded by the 26S proteasome, the UPS proteins involved are poorly characterised.

View Article and Find Full Text PDF

Understanding ubiquitination in neurodevelopment by integrating insights across space and time.

Nat Struct Mol Biol

January 2025

Max Planck Institute for Multidisciplinary Sciences, Research Group 'Ubiquitin Signaling Specificity', Am Fassberg 11, Göttingen, Germany.

Article Synopsis
  • - Ubiquitination plays a crucial role in regulating various signaling pathways in eukaryotic cells by modifying proteins, which affects their functions and life cycles.
  • - The review addresses the challenges of studying the ubiquitin system in the developing brain, emphasizing the complex and time-sensitive nature of these pathways during brain development and neural circuit formation.
  • - The authors suggest using interdisciplinary methods, including cell biology and neuroscience, to better understand how ubiquitination affects neurodevelopment and is linked to brain diseases, which could lead to new insights in neuroscience and potential clinical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!