Perivascular spaces in Alzheimer's disease are associated with inflammatory, stress-related, and hypertension biomarkers.

bioRxiv

Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Published: June 2023

Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. Literature suggests that PVS may play a significant role in aging and neurological disorders, including Alzheimer's disease (AD). Cortisol, a stress hormone, has been implicated in the development and progression of AD. Hypertension, a common condition in older adults, has been found to be a risk factor for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of waste products from the brain and promoting neuroinflammation. This study aims to understand the potential interactions between PVS, cortisol, hypertension, and inflammation in the context of cognitive impairment. Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale using an automated segmentation approach. Levels of cortisol and angiotensin-converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were analyzed using advanced laboratory techniques. Main effect and interaction analyses were performed to examine the associations between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. In the centrum semiovale, higher levels of inflammation reduced cortisol associations with PVS volume fraction. For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a transmembrane receptor of TNF). There was also a significant inverse main effect of TNFr2. In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF receptor inducing apoptosis). These findings show for the first time the intricate relationships between PVS structure and the levels of stress-related, hypertension, and inflammatory biomarkers. This research could potentially guide future studies regarding the underlying mechanisms of AD pathogenesis and the potential development of novel therapeutic strategies targeting these inflammation factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274635PMC
http://dx.doi.org/10.1101/2023.06.02.543504DOI Listing

Publication Analysis

Top Keywords

inflammatory biomarkers
12
pvs
11
perivascular spaces
8
alzheimer's disease
8
stress-related hypertension
8
cognitive impairment
8
basal ganglia
8
centrum semiovale
8
associations pvs
8
hypertension inflammatory
8

Similar Publications

Objective: Research on the link between inflammatory indicators and markers of bone metabolism is currently lacking, especially the interaction between Procollagen type 1 N-terminal propeptide (P1NP), the β-C-terminal telopeptide of type 1 collagen (β-CTX), and the fibrinogen-to-albumin ratio (FAR). This study intends to fill that knowledge gap by investigating the possible link between inflammatory indicators and bone metabolism.

Methods: This observational study included 718 individuals diagnosed with osteoporotic fractures from Kunshan Hospital Affiliated to Jiangsu University between January 2017 and July 2022.

View Article and Find Full Text PDF

Background: Sjogren syndrome (SS) is a chronic systemic autoimmune disease and its pathogenesis often involves the participation of numerous immune cells and inflammatory factors. Despite increased researches and studies recently focusing on this area, it remains to be fully elucidated. We decide to incorporate genetic insight into investigation of the causal link between various immune cells, inflammatory factors and pathogenesis of Sjogren syndrome (SS).

View Article and Find Full Text PDF

Purpose: Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.

Methods: The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology.

View Article and Find Full Text PDF

Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by intestinal inflammation and autoimmune responses. This study aimed to identify diagnostic biomarkers for UC through bioinformatics analysis and machine learning, and to validate these findings through immunofluorescence staining of clinical samples. Differential expression analysis was conducted on expression profile datasets from 4 UC samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!