Stubble-burning in northern India is an important source of atmospheric particulate matter (PM) and trace gases, which significantly impact local and regional climate, in addition to causing severe health risks. Scientific research on assessing the impact of these burnings on the air quality over Delhi is still relatively sparse. The present study analyzes the satellite-retrieved stubble-burning activities in the year 2021, using the MODIS active fire count data for Punjab and Haryana, and assesses the contribution of CO and PM from such biomass-burning activities to the pollution load in Delhi. The analysis suggests that the satellite-retrieved fire counts in Punjab and Haryana were the highest among the last five years (2016-2021). Further, we note that the stubble-burning fires in the year 2021 are delayed by ∼1 week compared to that in the year 2016. To quantify the contribution of the fires to the air pollution in Delhi, we use tagged tracers for CO and PM emissions from fire emissions in the regional air quality forecasting system. The modeling framework suggests a maximum daily mean contribution of the stubble-burning fires to the air pollution in Delhi in the months of October-November 2021 to be around 30-35%. We find that the contribution from stubble burning activities to the air quality in Delhi is maximum (minimum) during the turbulent hours of late morning to afternoon (calmer hours of evening to early morning). The quantification of this contribution is critical from the crop-residue and air-quality management perspective for policymakers in the source and the receptors regions, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275965 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e16939 | DOI Listing |
Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.
View Article and Find Full Text PDFEur J Prev Cardiol
January 2025
Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
Aims: Exposure to air pollution including diesel engine exhaust (DEE) is associated with increased risk of acute myocardial infarction (AMI). Few studies have investigated the risk of AMI according to occupational exposure to DEE. The aim of this study was to evaluate the association between occupational exposure to DEE and the risk of first-time AMI.
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Thyroid cancer is one of the most common cancers of the endocrine system. The incidence of this cancer has increased in many countries. Many cases of thyroid cancer do not have any symptoms.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!