In sugar production, polyacrylamide-based anionic flocculants are added for juice treatment, the main objective being to remove impurities that affect the quality of the sugar. However, if they remain in the final product, those polymers can present carcinogenic and neurotoxic actions besides contaminating the soils where the waste is discharged. To overcome this problem, the present study proposes, for the first time, natural flocculants based on cellulose obtained from sugarcane bagasse (residue from sugarcane processing) as substitutes for the flocculants based on polyacrylamide, normally used in sugar cane juice purification. Additionally, cellulose-based flocculants obtained from Acacia wood, developed in a previous study, have also been tested for sugar juice treatment. Acacia wood and sugarcane bagasse were first treated with a choline chloride/levulinic acid solution in a molar ratio of 1:2, at 160 °C, for 4 h. Subsequently, the cellulose-rich samples were modified by a two-stage process (oxidation with sodium periodate followed by reaction with sodium metabisulfite), and polyelectrolytes with different characteristics were produced. The final products obtained were characterized, and their performance in the treatment of sugarcane juice, at different concentrations (10, 50, 100, 250, and 500 mg kg), was evaluated and compared to the synthetic commercial flocculant (Flonex, based on polyacrylamide) usually used by the sugarcane industry in Brazil. The substitution of petrol-based flocculants by natural-based ones, obtained from sugarcane residues, is presented for the first time in this study, with very relevant performance of the new flocculants. Overall, it was possible to produce anionic flocculants, modifying the cellulose obtained from different raw materials, which showed good results in the purification of sucrose, when compared with the commercial polyacrylamide normally used. It is also important to stress that, for the first time, a residue from sugarcane industry could be used with success in the purification of the sugar juice itself, which constitutes a major novelty.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276231 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17134 | DOI Listing |
J Agric Food Chem
December 2024
College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.
View Article and Find Full Text PDFTree Physiol
December 2024
Université du Québec à Chicoutimi, laboratoire écosystèmes terrestres boréaux (EcoTer) Chicoutimi, Québec, Canada.
In temperate and boreal ecosystems, trees undergo dormancy to avoid cold temperatures during the unfavorable season. This phase includes changes in frost hardiness, which is minimal during the growing season and reaches its maximum in winter. Quantifying frost hardiness is important to assess the frost risk and shifts of species distribution under a changing climate.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India.
The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Dipartmento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90133 Palermo, Italy.
The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!