Solid polymer and perovskite-type ceramic electrolytes have both shown promise in advancing solid-state lithium metal batteries. Despite their favorable interfacial stability against lithium metal, polymer electrolytes face issues due to their low ionic conductivity and poor mechanical strength. Highly conductive and mechanically robust ceramics, on the other hand, cannot physically remain in contact with redox-active particles that expand and contract during charge-discharge cycles unless excessive pressures are used. To overcome the disadvantages of each material, polymer-ceramic composites can be formed; however, depletion interactions will always lead to aggregation of the ceramic particles if a homopolymer above its melting temperature is used. In this study, we incorporate LiLaTiO (LLTO) nanoparticles into a block copolymer, polystyrene--poly (ethylene oxide) (SEO), to develop a polymer-composite electrolyte (SEO-LLTO). TEMs of the same nanoparticles in polyethylene oxide (PEO) show highly aggregated particles whereas a significant fraction of the nanoparticles are dispersed within the PEO-rich lamellae of the SEO-LLTO electrolyte. We use synchrotron hard x-ray microtomography to study the cell failure and interfacial stability of SEO-LLTO in cycled lithium-lithium symmetric cells. Three-dimensional tomograms reveal the formation of large globular lithium structures in the vicinity of the LLTO aggregates. Encasing the SEO-LLTO between layers of SEO to form a "sandwich" electrolyte, we prevent direct contact of LLTO with lithium metal, which allows for the passage of seven-fold higher current densities without signatures of lithium deposition around LLTO. We posit that eliminating particle clustering and direct contact of LLTO and lithium metal through dry processing techniques is crucial to enabling composite electrolytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272992PMC
http://dx.doi.org/10.3389/fchem.2023.1199677DOI Listing

Publication Analysis

Top Keywords

lithium metal
16
block copolymer
8
interfacial stability
8
direct contact
8
contact llto
8
llto lithium
8
lithium
6
llto
5
cycling block
4
copolymer composites
4

Similar Publications

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

Regulating Lithium-Ion Transport in PEO-Based Solid-State Electrolytes through Microstructures of Clay Minerals.

ACS Appl Mater Interfaces

January 2025

Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.

Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

The real-time measurement of the content of impurities such as iron and aluminium ions is one of the keys to quality evaluation in the production process of high-purity lithium carbonate; however, impurity detection has been a time-consuming process for many years, which limits the optimisation of the production of high-purity lithium carbonate. In this context, this work explores the possibility of using water-soluble fluorescent probes for the rapid detection of impurity ions. Salicylaldehyde was modified with the hydrophilic group dl-alanine to synthesise a water-soluble Al fluorescent probe (Probe A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!