Introduction: The retina represents a critical ocular structure. Of the various ophthalmic afflictions, retinal pathologies have garnered considerable scientific interest, owing to their elevated prevalence and propensity to induce blindness. Among clinical evaluation techniques employed in ophthalmology, optical coherence tomography (OCT) is the most commonly utilized, as it permits non-invasive, rapid acquisition of high-resolution, cross-sectional images of the retina. Timely detection and intervention can significantly abate the risk of blindness and effectively mitigate the national incidence rate of visual impairments.
Methods: This study introduces a novel, efficient global attention block (GAB) for feed forward convolutional neural networks (CNNs). The GAB generates an attention map along three dimensions (height, width, and channel) for any intermediate feature map, which it then uses to compute adaptive feature weights by multiplying it with the input feature map. This GAB is a versatile module that can seamlessly integrate with any CNN, significantly improving its classification performance. Based on the GAB, we propose a lightweight classification network model, GABNet, which we develop on a UCSD general retinal OCT dataset comprising 108,312 OCT images from 4686 patients, including choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and normal cases.
Results: Notably, our approach improves the classification accuracy by 3.7% over the EfficientNetV2B3 network model. We further employ gradient-weighted class activation mapping (Grad-CAM) to highlight regions of interest on retinal OCT images for each class, enabling doctors to easily interpret model predictions and improve their efficiency in evaluating relevant models.
Discussion: With the increasing use and application of OCT technology in the clinical diagnosis of retinal images, our approach offers an additional diagnostic tool to enhance the diagnostic efficiency of clinical OCT retinal images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272427 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1143422 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
School of Graduate, Dalian Medical University, Dalian City, China.
Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.
Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.
Am J Ophthalmol Case Rep
March 2025
University of Florida, Department of Ophthalmology, USA.
Purpose: Human amniotic membrane (hAM) grafts have been used to close persistent macular holes in recent years. The results from these surgeries are promising with improved closure rate and vision. However, there is lack of data for what happens to these membranes and how long the tissue should remain inside the patient's eyes.
View Article and Find Full Text PDFNeurophotonics
January 2025
University of Illinois Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States.
Significance: Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed.
View Article and Find Full Text PDFEye (Lond)
January 2025
Department of Vitreo retina and uveitis, LV Prasad Eye Institute, GMRV Campus, Visakhapatnam, India.
Ophthalmologie
January 2025
Klinik für Augenheilkunde, Universitätsklinikum Ulm, Prittwitzstr. 43, 89075, Ulm, Deutschland.
Comprehensive multimodal imaging is essential for the precise clinical diagnostics of neovascular age-related macular degeneration (nAMD). Noninvasive optical coherence tomography (OCT) is of prime importance regarding the baseline examination, follow-up and monitoring during treatment. The OCT imaging in nAMD eyes enables a high-resolution assessment of the retinal micromorphology, which can be considerably disturbed in different layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!