A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on the Catalytic Characteristics of Precious Metal Catalysts with Different Pt/Pd Ratios for Soot Combustion. | LitMetric

Soot particles in engine exhaust seriously pollute the atmosphere and endanger human health. For soot oxidation, Pt and Pd precious metal catalysts are widely used and are effective. In this paper, the catalytic characteristics of catalysts with different Pt/Pd mass ratios for soot combustion were studied through X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, the temperature-programmed oxidation reaction, and thermogravimetry. Besides, the adsorption characteristics of soot and O on the catalyst surface were explored by density functional theory (DFT) calculations. The research results showed that the activity of catalysts for soot oxidation from strong to weak is Pt/Pd = 10:1, Pt/Pd = 5:1, Pt/Pd = 1:0, and Pt/Pd = 1:1. XPS results showed that the concentration of oxygen vacancies in the catalyst is the highest when the Pt/Pd ratio is 10:1. The specific surface area of the catalyst increases first and then decreases with the increase of Pd content. When the Pt/Pd ratio is 10:1, the specific surface area and pore volume of the catalyst reach the maximum. The following are the DFT calculation results. With the increase of Pd content, the adsorption energy of particles on the catalyst surface decreases first and then increases. When the Pt/Pd ratio is 10:1, the adsorption of C on the catalyst surface is the strongest, and the adsorption of O is also strong. In addition, this surface has a strong ability to donate electrons. The theoretical simulation results are consistent with the activity test results. The research results have a guiding significance for optimizing the Pt/Pd ratio and improving the soot oxidation performance of the catalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268644PMC
http://dx.doi.org/10.1021/acsomega.3c01543DOI Listing

Publication Analysis

Top Keywords

pt/pd ratio
16
soot oxidation
12
catalyst surface
12
ratio 101
12
pt/pd
10
catalytic characteristics
8
precious metal
8
metal catalysts
8
catalysts pt/pd
8
ratios soot
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!