Background: Mesenchymal stem cells (MSC) have shown immense therapeutic promise in a range of inflammatory diseases, including acute respiratory distress syndrome (ARDS), and are rapidly advancing through clinical trials. Among their multimodal mechanisms of action, MSCs exert strong immunomodulatory effects via their secretome, which contains cytokines, small molecules, extracellular vesicles, and a range of other factors. Recent studies have shown that the MSC secretome can recapitulate many of the beneficial effects of the MSC itself. We aimed to determine the therapeutic capacity of the MSC secretome in a rat bacterial pneumonia model, especially when delivered directly to the lung by nebulization which is a technique more appropriate for the ventilated patient.

Methods: Conditioned medium (CM) was generated from human bone marrow derived MSCs in the absence of antibiotics and serum supplements. Post-nebulization lung penetration was estimated through nebulization of CM to a cascade impactor and simulated lung and quantification of collected total protein and IL-8 cytokine. Control and nebulized CM was added to a variety of lung cell culture models and injury resolution assessed. In a rat pneumonia model, CM was instilled or administered by nebulization and lung injury and inflammation assessed at 48 h.

Results: MSC-CM was predicted to have good distal lung penetration and delivery when administered by nebulizer. Both control and nebulized CM reduced NF-κB activation and inflammatory cytokine production in lung cell culture, while promoting cell viability and would closure in oxidative stress and scratch wound models. In a rat bacterial pneumonia model, both instilled and nebulizer delivered CM improved lung function, increasing blood oxygenation and reducing carbon dioxide levels compared to unconditioned medium controls. A reduction in bacterial load was also observed in both treatment groups. Inflammatory cytokines were reduced significantly by both liquid and aerosol CM administration, with less IL-1β, IL-6, and CINC1 in these groups compared to controls.

Conclusion: MSC-CM is a potential therapeutic for pneumonia ARDS, and administration is compatible with vibrating mesh nebulization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272576PMC
http://dx.doi.org/10.3389/fmed.2023.1162615DOI Listing

Publication Analysis

Top Keywords

pneumonia model
12
mesenchymal stem
8
conditioned medium
8
msc secretome
8
rat bacterial
8
bacterial pneumonia
8
lung
8
lung penetration
8
control nebulized
8
lung cell
8

Similar Publications

Novel inhibition of sortase A by plantamajoside: implications for controlling multidrug-resistant infections.

Appl Environ Microbiol

December 2024

Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.

In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in . We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from .

View Article and Find Full Text PDF

The importance of Fcγ and C-type lectin receptors in host immune responses during pneumonia.

Infect Immun

December 2024

Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.

pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure.

View Article and Find Full Text PDF

mRNA-LNP vaccines combined with tPA signal sequence elicit strong protective immunity against .

mSphere

December 2024

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China.

is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling . To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections.

View Article and Find Full Text PDF

In the last years, it has been proved that some viruses are able to re-structure chromatin organization and alter the epigenomic landscape of the host genome. In addition, they are able to affect the physical mechanisms shaping chromatin 3D structure, with a consequent impact on gene activity. Here, we investigate with polymer physics genome re-organization of the host genome upon SARS-CoV-2 viral infection and how it can impact structural variability within the population of single-cell chromatin configurations.

View Article and Find Full Text PDF

Background: Access to healthcare services for the population with long COVID is a challenge, as healthcare systems have been tasked with responding effectively to the extensive clinical heterogeneity of this disease.

Objective: To analyze the factors associated with access to health services among people with long COVID in the Brazilian Amazon.

Methods: This is a cross-sectional study using a quantitative method, conducted through an online survey between May 2023 and January 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!