is a perennial tuberous root in the Asclepiadaceae family that has long been used medicinally. Although is distinct in origin and content from , a genus of the same species, it is difficult for the public to recognize because the ripe fruit and root are remarkably similar. In this study, images were collected to categorize and , which were then processed and input into a deep-learning classification model to corroborate the results. By obtaining 200 photographs of each of the two cross sections of each medicinal material, approximately 800 images were employed, and approximately 3200 images were used to construct a deep-learning classification model image augmentation. For the classification, the structures of Inception-ResNet and VGGnet-19 among convolutional neural network (CNN) models were used, with Inception-ResNet outperforming VGGnet-19 in terms of performance and learning speed. The validation set confirmed a strong classification performance of approximately 0.862. Furthermore, explanatory properties were added to the deep-learning model using local interpretable model-agnostic explanation (LIME), and the suitability of the LIME domain was assessed using cross-validation in both situations. Thus, artificial intelligence may be used as an auxiliary metric in the sensory evaluation of medicinal materials in future, owing to its explanatory ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272731PMC
http://dx.doi.org/10.3389/fpls.2023.1169709DOI Listing

Publication Analysis

Top Keywords

classification model
12
convolutional neural
8
neural network
8
local interpretable
8
interpretable model-agnostic
8
model-agnostic explanation
8
deep-learning classification
8
development classification
4
model
4
model convolutional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!