Postmenopausal osteoporosis caused by estrogen deficiency affects millions of women worldwide. By influencing both osteoblast and osteoclast development, NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) is a key player in the etiology of osteoporosis (OP). The purpose of this research was to look into the mechanism of action of NLRP3 in osteoporosis caused by a lack of estrogen, highlighting that NLRP3 induces osteoblast pyroptosis and thus inflammatory responses in de-ovulated mice, thereby inhibiting osteogenic differentiation and participating in the development of osteoporosis. In de-ovulated mice, we found an enhanced inflammatory response and suppression of osteogenic activity. In vitro experiments, we found a significant increase in markers of cell pyroptosis and inflammatory responses and a significant decrease in markers of osteogenic differentiation in osteoblasts from de-ovulated mice. However, knockdown of the NLRP3 gene inhibited this cell pyroptosis and improved osteogenic differentiation of osteoblasts. Our findings indicate a potential therapeutic potential for the treatment of estrogen deficiency-induced osteoporosis by demonstrating the critical role that NLRP3 inflammatory vesicles and their downstream-mediated cellular pyroptosis play in bone differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276222 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2023.101496 | DOI Listing |
Biochem Biophys Rep
September 2023
The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
Postmenopausal osteoporosis caused by estrogen deficiency affects millions of women worldwide. By influencing both osteoblast and osteoclast development, NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) is a key player in the etiology of osteoporosis (OP). The purpose of this research was to look into the mechanism of action of NLRP3 in osteoporosis caused by a lack of estrogen, highlighting that NLRP3 induces osteoblast pyroptosis and thus inflammatory responses in de-ovulated mice, thereby inhibiting osteogenic differentiation and participating in the development of osteoporosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!