Urinary tract infection (UTI) is a pervasive health problem worldwide. Patients with a history of UTIs suffer increased risk of recurrent infections, a major risk of antibiotic resistance. Here, we show that bladder infections induce expression of in bladder urothelial cells. is the methyltransferase of polycomb repressor complex 2 (PRC2)-a potent epigenetic regulator. Urothelium-specific inactivation of PRC2 results in reduced urine bacterial burden, muted inflammatory response, and decreased activity of the signaling pathway. PRC2 inactivation also facilitates proper regeneration after urothelial damage from UTIs, by attenuating basal cell hyperplasia and increasing urothelial differentiation. In addition, treatment with Ezh2-specific small-molecule inhibitors improves outcomes of the chronic and severe bladder infections in mice. These findings collectively suggest that the PRC2-dependent epigenetic reprograming controls the amplitude of inflammation and severity of UTIs and that Ezh2 inhibitors may be a viable non-antibiotic strategy to manage chronic and severe UTIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272480 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.106925 | DOI Listing |
Dev Cell
January 2025
King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:
Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.
The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. is frequently mutated and/or its expression is deregulated in various cancer types.
View Article and Find Full Text PDFJ Med Virol
December 2024
Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
Mol Cell
January 2025
Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA. Electronic address:
Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!