Arginine-rich dipeptide repeat proteins (R-DPRs), poly(PR) and poly(GR), translated from the hexanucleotide repeat expansion in the amyotrophic lateral sclerosis (ALS)-causative gene, contribute significantly to pathogenesis of ALS. Although both R-DPRs share many similarities, there are critical differences in their subcellular localization, phase separation, and toxicity mechanisms. We analyzed localization, protein-protein interactions, and phase separation of R-DPR variants and found that sufficient segregation of arginine charges is necessary for nucleolar distribution. Proline not only efficiently separated the charges, but also allowed for weak, but highly multivalent binding. In contrast, because of its high flexibility, glycine cannot fully separate the charges, and poly(GR) behaves similarly to the contiguous arginines, being trapped in the cytoplasm. We conclude that the amino acid that spaces the arginine charges determines the strength and multivalency of the binding, leading to differences in localization and toxicity mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275993PMC
http://dx.doi.org/10.1016/j.isci.2023.106957DOI Listing

Publication Analysis

Top Keywords

arginine-rich dipeptide
8
dipeptide repeat
8
repeat proteins
8
phase separation
8
toxicity mechanisms
8
arginine charges
8
charges
5
differential toxicity
4
localization
4
toxicity localization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!