Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA is commonly excreted in the feces and urine of infected individuals and is, therefore, detected in wastewaters where infection is present in the surrounding population. Water reclamation plants (WRPs) that treat these wastewaters commonly discharge treated effluents into the surrounding environment, yet little is known about the removal or persistence of SARS-CoV-2 RNA through wastewater treatment systems and potential for eventual release into the environment. We collected 361 24-hour composite influent and effluent samples from seven WRPs in the Greater Chicago Area in Illinois. Samples were collected over a period of 21 weeks for three large WRPs (with design max flows of 1.89-2.32 billion gallons per day and serving a combined population of 4.62 million people) and 11 weeks for four smaller WRPs (with design max flows of 96.3-186 million gallons per day and serving a combined population of >0.5 million people). A total of two of the larger WRPs implemented seasonal disinfection (using UV light or chlorination/dechlorination) for 8 weeks of this sampling period. SARS-CoV-2 RNA was quantified in the influent and effluent samples by reverse-transcription quantitative PCR (RT-qPCR) of the N1 and N2 targets of the nucleocapsid (N) gene. Although SARS-CoV-2 RNA was regularly detected in influent and effluent from all WRPs, viral RNA concentrations in the effluent samples were considerably lower, with mean effluent: influent gene copy concentration ratios ranging from 1:160 to 1:2.95 between WRPs. Samples collected while disinfection was active vs. inactive did not show any significant difference in the portion of RNA persisting through the treatment process ( > .05).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117756 | PMC |
http://dx.doi.org/10.1093/femsmc/xtac015 | DOI Listing |
Biochemistry (Mosc)
December 2024
National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Federal University of São João Del Rei, Dona Lindu Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil.
Introduction: We assessed the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated socio-occupational factors among delivery riders from a Brazilian city at two time points during the pandemic.
Methodology: Surveys for antibody and viral RNA testing were conducted from November 2020 to January 2021, and from March to May 2021 in a group of 117 delivery riders. A questionnaire on socio-occupational characteristics and coronavirus disease 2019 (COVID-19) preventive measures was completed.
Virol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India. Electronic address:
Globally, over 768 million confirmed cases and 6.9 million deaths had been documented as of July 17, 2023. Coronaviruses have a relatively large RNA genome.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:
Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.
Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!