Analytical solution of phosphate kinetics for hemodialysis.

J Math Biol

IMFUFA, Centre for Mathematical Modeling, Human Health and Disease, Roskilde University, Roskilde, Denmark.

Published: June 2023

Chronic kidney diseases imply an ongoing need to remove toxins, with hemodialysis as the preferred treatment modality. We derive analytical expressions for phosphate clearance during dialysis, the single pass (SP) model corresponding to a standard clinical hemodialysis and the multi pass (MP) model, where dialysate is recycled and therefore makes a smaller clinical setting possible such as a transportable dialysis suitcase. For both cases we show that the convective contribution to the dialysate is negligible for the phosphate kinetics and derive simpler expressions. The SP and MP models are calibrated to clinical data of ten patients showing consistency between the models and provide estimates of the kinetic parameters. Immediately after dialysis a rebound effect is observed. We derive a simple formula describing this effect which is valid both posterior to SP or MP dialysis. The analytical formulas provide explanations to observations of previous clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277266PMC
http://dx.doi.org/10.1007/s00285-023-01942-4DOI Listing

Publication Analysis

Top Keywords

phosphate kinetics
8
pass model
8
analytical solution
4
solution phosphate
4
kinetics hemodialysis
4
hemodialysis chronic
4
chronic kidney
4
kidney diseases
4
diseases imply
4
imply ongoing
4

Similar Publications

Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges.

Front Physiol

January 2025

Institute of Vegetative Physiology, University of Cologne, Köln, Germany.

Objective: Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (P) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding P. The aim was to explore the significance of force redevelopment kinetics (rate constant ) in cardiac myofibrils for the coupling between the P binding induced force reversal and the rate-limiting transition for backward cycling of cross-bridges from force-generating to non-force-generating states.

Methods: and force generation of cardiac myofibrils from guinea pigs were investigated at 0.

View Article and Find Full Text PDF

Inorganic anions such as chloride (Cl), nitrate (), sulfate (), carbonate (), bicarbonate (), dihydrogen phosphate (), fluoride (F) are ubiquitous in water matrices, play a significant role in the degradation of organic pollutants by Fenton process. In the present study, the performance of Fenton process in the presence of these anions was studied using phenol as a model compound along with the underlying mechanism and their tolerance limit. The presence of these anions affects the rate constant of the Fenton process and decreases in the following order, ---Cl >  >  >  > F.

View Article and Find Full Text PDF

The adsorption of phosphate in the collected water is crucial to alleviate the crisis of phosphorus resources, which is in line with the concept of green and sustainable development of resources. In this study, based on the calcium modification technology of pyrolysis combined with chemical modification, a new type of calcium modified coal gangue (CaMCG) was prepared by using coal gangue as raw material and calcium chloride as modifier for the removal of phosphate.The optimum preparation conditions of CaMCG were obtained by response surface test: m:m=1, calcination temperature 735℃, calcination time 135 min.

View Article and Find Full Text PDF

A Phase-Transition-Free Sodium Vanadium Phosphate Cathode via Medium-Entropy Engineering for Superior Sodium Ion Batteries.

Adv Mater

January 2025

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.

NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.

View Article and Find Full Text PDF

Study of the interaction between alkaline phosphatase and biomacromolecule substrates.

Anal Bioanal Chem

January 2025

Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.

Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!