Milk fatty acid composition is gaining interest in the Danish dairy industry both to develop new dairy products and as a management tool. To be able to implement milk fatty acid (FA) composition in the breeding program, it is important to know the correlations with the traits in the breeding goal. To estimate these correlations, we measured milk fat composition in Danish Holstein (DH) and Danish Jersey (DJ) cattle breeds using mid-infrared spectroscopy. Breeding values were estimated for specific FA and for groups of FA. Correlations with the estimated breeding values (EBV) underlying the Nordic Total Merit index (NTM) were calculated within breed. For both DH and DJ, we showed that FA EBV had moderate correlations with the NTM and production traits. For both DH and DJ, the correlation of FA EBV and NTM were in the same direction, except for C16:0 (0 in DH, 0.23 in DJ). A few correlations differed between DH and DJ. The correlation between claw health index and C18:0 was negative in DH (-0.09) but positive in DJ (0.12). In addition, some correlations were not significant in DH but were significant in DJ. The correlations between udder health index and long-chain FA, trans FA, C16:0, and C18:0 were not significant in DH (-0.05 to 0.02), but were significant in DJ (-0.17, -0.15, 0.14, and -0.16, respectively). For both DH and DJ, the correlations between FA EBV and nonproduction traits were low. This implies that it is possible to breed for a different fat composition in the milk without affecting the nonproduction traits in the breeding goal.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2022-22575DOI Listing

Publication Analysis

Top Keywords

breeding values
12
milk fatty
12
nordic total
8
total merit
8
danish holstein
8
holstein danish
8
danish jersey
8
fatty acid
8
acid composition
8
correlations
8

Similar Publications

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.

View Article and Find Full Text PDF

(CM), renowned for its diverse and vibrant varieties, holds significant ornamental and medicinal value. Despite this, the core regulatory mechanisms underlying its coloration, especially in non-petal tissues (i.e.

View Article and Find Full Text PDF

The objectives of this study were to evaluate different machine learning algorithms for predicting body weight (BW) in Sujiang pigs using the following morphological traits: age, body length (BL), backfat thickness (BFT), chest circumference (CC), body height (BH), chest width (CW), and hip width (HW). Additionally, this study also investigated which machine learning algorithms could accurately and efficiently predict body weight in pigs using a limited set of morphological traits. For this purpose, morphological measurements of 365 mature (180 ± 5 days) Sujiang pigs from the Jiangsu Sujiang Pig Breeding Farm in Taizhou, Jiangsu Province, China were used.

View Article and Find Full Text PDF

Assessing the success of breeding maize inbred lines with contrasting diferulate concentrations.

BMC Plant Biol

January 2025

Misión Biológica de Galicia (CSIC), Depto. Producción Vegetal, Pazo de Salcedo, Carballeira 8, Pontevedra, 36143, Spain.

Background: The crosslinking of maize cell wall components, particularly mediated by the formation of ferulic acid dimers or diferulates, has been associated with important crop valorization traits such as increased pest resistance, lower forage digestibility, or reduced bioethanol production. However, these relationships were based on studies performed using diverse unrelated inbred lines and/or populations, so genetic background could interfere on these associations.

Results: In the present research, the success of a pedigree selection program aimed to obtain inbred lines from a common antecessor with contrasting diferulate concentration was evaluated.

View Article and Find Full Text PDF

Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.

BMC Plant Biol

January 2025

Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.

Background: Cotton is a non-edible fiber crop with considerable potential for the remediation of copper-polluted soil. However, the Cu toxicity tolerance mechanism in cotton remains largely obscure. To address the issue, we first identified two cotton lines contrasting in response to Cu toxicity by examining 12 morphological and physiological attributes of 43 origin scattered cotton genotypes under Cu excess.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!