Global PM and secondary organic aerosols (SOA) levels with sectorial contribution to anthropogenic and biogenic SOA formation.

Chemosphere

Department of Civil Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India. Electronic address:

Published: September 2023

AI Article Synopsis

  • - This study analyzes global particulate matter (PM) and sources of Secondary Organic Aerosols (SOA), dividing the world into 11 regions and 46 cities to assess emission sources using multiple global databases and modeling for the year 2018.
  • - Major findings indicate that no city met the WHO's PM guideline, with South Asian cities like Delhi, Dhaka, and Kolkata being the most polluted, while seven cities mainly in Europe and North America conformed to the WHO target for PM levels.
  • - Residential emissions were the primary source of SOA globally, while non-coal industries contributed significantly as well; solutions like reducing biomass and solid fuel burning are recommended to improve PM and SOA levels.

Article Abstract

This study estimates global PM and anthropogenic and biogenic Secondary Organic Aerosols (a-SOA and b-SOA) and sources contributing to their formation. The global landscape was divided into eleven domains (North America (NAM); South America (SAM); Europe (EUR); North Africa and Middle East (NAF); Equatorial Africa (EAF); South of Africa (SAF); Russia and Central Asia (RUS); Eastern Asia (EAS); South Asia (SAS); Southeast Asia (SEA) and Australia (AUS)) and 46 cities based on varying populations. Three inventories for global emissions were considered: Community Emissions Data System, Model of Emission of Gases and Aerosol, and Global Fire Emissions Database. WRF-Chem model coupled with atmospheric reactions and the secondary organic aerosol model was employed for estimating PM, a-SOA, and b-SOA for 2018. No city attained WHO's annual PM guideline of 5 μg/m. Delhi, Dhaka, and Kolkata (63-92 μg/m) in south Asia were the most polluted, and seven cities (mostly in EUR and NAM) met the WHO target IV (10 μg/m). The highest SOA levels (2-9 μg/m) were in the cities of SAS and Africa, but with a low SOA contribution to PM (3-22%). However, the low levels of SOA (1-3 μg/m) in EUR and NAM had a higher contribution of SOA to PM (20-33%). b-SOA were consistent with the region's vegetation and forest cover. The SOA contribution was dominated by residential emissions in all domains (except in the NAF and AUS) (maximum in SAS). The non-coal industry was the second highest contributor (except in EAF, NAF, and AUS) and EUR had the maximum contribution from agriculture and transport. Globally, residential and industry (non-coal and coal) sectors showed the maximum contribution to SOA, with a-SOA and b-SOA being nearly equal. Ridding of biomass and residential burning of solid fuel is the single most action benefiting the PM and SOA concerns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139195DOI Listing

Publication Analysis

Top Keywords

secondary organic
12
a-soa b-soa
12
soa
9
organic aerosols
8
soa levels
8
anthropogenic biogenic
8
south asia
8
eur nam
8
soa contribution
8
contribution soa
8

Similar Publications

Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare.

View Article and Find Full Text PDF

The evolution of precursors to form secondary organic aerosol (SOA) is still a challenge in atmospheric chemistry. Chamber experiments were conducted to simulate the ambient OH oxidation of naphthalene and α-pinene, which are typical markers of anthropogenic and biogenic emissions. Particulate matters were sampled by quartz filters and were analyzed by comprehensive two-dimensional gas chromatography (GC×GC) coupled with a thermal desorption system (TD) and a mass spectrometer (MS).

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study.

J Hazard Mater

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

Early detection of bacterial pneumonia by characteristic induced odor signatures.

BMC Infect Dis

December 2024

Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, Zurich, 8097, Switzerland.

Introduction: The ability to detect pathogenic bacteria before the onsets of severe respiratory symptoms and to differentiate bacterial infection allows to improve patient-tailored treatment leading to a significant reduction in illness severity, comorbidity as well as antibiotic resistance. As such, this study refines the application of the non-invasive Secondary Electrospray Ionization-High Resolution Mass Spectrometry (SESI-HRMS) methodology for real-time and early detection of human respiratory bacterial pathogens in the respiratory tract of a mouse infection model.

Methods: A real-time analysis of changes in volatile metabolites excreted by mice undergoing a lung infection by Staphylococcus aureus or Streptococcus pneumoniae were evaluated using a SESI-HRMS instrument.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!