Microplastic (MP) pollution is ubiquitous in the environment presenting a global problem for both scientists and the general public. One of the major pathways of MPs entering the natural environment is through wastewater treatment plants (WWTPs). Once MPs reach the natural environment, they are posing threat to aquatic ecosystems and public health. The aim of this study is to investigate the concentration, morphology, and composition of MPs in different treatment units of a WWTP. Sampling included different points across WWTP in the water and sludge lines. Pre-treatment of the samples consists of advanced Fenton oxidation, and alkaline and enzymatic digestion followed by density separation. Once the particles were isolated, their morphology and size were studied using a stereoscopic and optical microscope followed by final confirmation with ATR-FTIR and micro-FTIR spectroscopy. Microplastic particle concentrations exhibit significant reductions as water undergoes treatment in the WWTP. For summer sampling, concentrations decreased from 351 MP/L (influent) to 35 MP/L (primary clarifier), 32 MP/L (biological reactor), and 13 MP/L (2.3 MP/L) (secondary clarifier). Similarly, winter sampling showed reductions from 403 MP/L (influent) to 159 MP/L (primary clarifier), 178 MP/L (biological reactor), and 26 MP/L (5.6 MP/L) (secondary clarifier). Removal efficiency of WWTP is high and exceeds 96%. The most abundant morphology is fibers followed by fragments and films. Polymers such as PE, synthetic cellulose, PP, PVC, PE-PP, PEEA, PA, acrylamide, and PES are widely detected in different units of WWTP. The number of MPs that are avoided from being emitted into the environment through direct water discharge was estimated to be 9.1 × 10 MP/year. Removed MPs tend to accumulate in the sludge that is used for agricultural purposes although it should be managed as waste properly, avoiding the transition of MPs pollutants to terrestrial ecosystems adding to the number of MPs that will inevitably end up in receiving water bodies through direct WWTP effluent discharge that was set in 5.1 × 10 MP/year in the studied WWTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122072 | DOI Listing |
Sci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Administration, Guangzhou University, Guangzhou, 510006, China.
With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India, 695019.
The study presents findings from physico-chemical and elemental analyses of fresh faecal matter from a residential apartment in Thiruvananthapuram, Kerala, India. Samples were taken every 8-10 days over 4 months to account for variability and establish baseline data. The study also examines the influence of dietary patterns and toilet cleaners on faecal sludge properties.
View Article and Find Full Text PDFSci Rep
December 2024
Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!