Background & Aims: Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the de novo serine synthesis pathway (SSP), has been implicated in the carcinogenesis and metastasis of hepatocellular carcinoma (HCC) because of its excessive expression and promotion of SSP. In previous experiments we found that SSP flux was diminished by knockdown of zinc finger E-box binding homeobox 1 (ZEB1), a stimulator of HCC metastasis, but the underlying mechanism remains largely unknown. Here, we aimed to determine how SSP flux is regulated by ZEB1 and the contribution of such regulation to carcinogenesis and progression of HCC.
Methods: We used genetic mice with Zeb1 knockout in liver specifically to determine whether Zeb1 deficiency impacts HCC induced by the carcinogen diethylnitrosamine plus CCl. We explored the regulatory mechanism of ZEB1 in SSP flux using uniformly-labeled [C]-glucose tracing analyses, liquid chromatography-mass spectrometry, real-time quantitative polymerase chain reaction, luciferase report assay, and chromatin immunoprecipitation assay. We determined the contribution of the ZEB1-PHGDH regulatory axis to carcinogenesis and metastasis of HCC by cell counting assay, methyl thiazolyl tetrazolium (MTT) assay, scratch wound assay, Transwell assay, and soft agar assay in vitro, orthotopic xenograft, bioluminescence, and H&E assays in vivo. We investigated the clinical relevance of ZEB1 and PHGDH by analyzing publicly available data sets and 48 pairs of HCC clinical specimens.
Results: We identified that ZEB1 activates PHGDH transcription by binding to a nonclassic binding site within its promoter region. Up-regulated PHGDH augments SSP flux to enable HCC cells to be more invasive, proliferative, and resistant to reactive oxygen species and sorafenib. Orthotopic xenograft and bioluminescence assays have shown that ZEB1 deficiency significantly impairs the tumorigenesis and metastasis of HCC, and such impairments can be rescued to a large extent by exogenous expression of PHGDH. These results were confirmed by the observation that conditional knockout of ZEB1 in mouse liver dramatically impedes carcinogenesis and progression of HCC induced by diethylnitrosamine/CCl, as well as PHGDH expression. In addition, analysis of The Cancer Genome Atlas database and clinical HCC samples showed that the ZEB1-PHGDH regulatory axis predicts poor prognosis of HCC.
Conclusions: ZEB1 plays a crucial role in stimulating carcinogenesis and progression of HCC by activating PHGDH transcription and subsequent SSP flux, deepening our knowledge of ZEB1 as a transcriptional factor in fostering the development of HCC via reprogramming the metabolic pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469392 | PMC |
http://dx.doi.org/10.1016/j.jcmgh.2023.06.006 | DOI Listing |
BMC Cancer
December 2024
Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, 475004, China.
Background: Serine/glycine are critical for the growth and survival of cancer cells. Some cancer cells are more dependent on exogenous serine/glycine than endogenously synthesized serine/glycine. However, the function and underlying mechanisms of exogenous serine/glycine in renal cell carcinoma (RCC) remain unclear.
View Article and Find Full Text PDFGlob Chang Biol
August 2024
NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
Terrestrial gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle and plays a crucial role in terrestrial carbon sequestration. However, historical and future global GPP estimates still vary markedly. In this study, we reduced uncertainties in global GPP estimates by employing an innovative emergent constraint method on remote sensing-based GPP datasets (RS-GPP), using ground-based estimates of GPP from flux towers as the observational constraint.
View Article and Find Full Text PDFSci Total Environ
May 2024
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan, China. Electronic address:
The evapotranspiration (ET) plays a crucial role in shaping regional climate patterns and serves as a vital indicator of ecosystem function. However, there remains a limited understanding of the seasonal variability of future ET over China and its correlation with environmental drivers. This study evaluated the skills of 27 models from the Six Phase of Coupled Model Intercomparison Project in modeling ET and the Bayesian Model Averaging (BMA) method was employed to merge monthly simulated ET based on the top five best-performing models.
View Article and Find Full Text PDFWater Res
March 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center of Membrane Materials and Membrane Processes, Jiangsu Future Membrane Technology Innovation Center, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China; Suzhou Laboratory, Suzhou 215100, China. Electronic address:
Nanofiltration (NF) membranes play a pivotal role in water treatment; however, the persistent challenge of membrane fouling hampers their stable application. This study introduces a novel approach to address this issue through the creation of a poly(3,4-ethylenedioxythiophene) (PEDOT)-based conductive membrane, achieved by synergistically coupling interfacial polymerization (IP) with in situ self-polymerization of EDOT. During the IP reaction, the concurrent generation of HCl triggers the protonation of EDOT, activating its self-polymerization into PEDOT.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
December 2023
Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
Background: Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown.
Methods: We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!