Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528136 | PMC |
http://dx.doi.org/10.1016/j.pharmthera.2023.108481 | DOI Listing |
Fluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFVet Res
January 2025
Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.
Background And Hypothesis: Gut dysbiosis characterized by an imbalance in pathobionts (Enterobacter, Escherichia and Salmonella) and symbionts (Bifidobacterium, Lactobacillus and Prevotella) can occur during chronic kidney disease (CKD) progression. We evaluated the associations between representative symbionts (Bifidobacterium and Lactobacillus) and pathobionts (Enterobacteriaceae) with kidney function in persons with autosomal dominant polycystic kidney disease (ADPKD).
Methods: In this cross-sectional study, 29 ADPKD patients were matched to 15 controls at a 2:1 ratio.
BMC Nephrol
January 2025
Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-8641, Japan.
Background: The impact of chronic kidney disease (CKD) on healthy life expectancy and healthcare costs requires research. This study examined associations between CKD and healthy life expectancy, and its economic burden.
Methods: This study of community-dwelling adults residing in Hakui City, Ishikawa Prefecture, Japan used data from the National Health Insurance database between 2012 and 2022.
Aim: Chronic Kidney Disease (CKD) has emerged as a global public health concern. People with the most advanced stage of CKD require renal replacement therapies, either dialysis (the focus of this study) or a kidney transplant. Research on CKD has primarily focused on its clinical, epidemiological, and public health aspects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!