Staphylococcus aureus is typically treated with antibiotics, however, due to its widespread and unselective usage, resistant strains of S. aureus have increased to a great extent. Treatment failure and recurring staphylococcal infections are also brought on by biofilm development, which boosts an organism's ability to withstand antibiotics and is thought to be a virulence factor in patients. The present study investigates the antibiofilm activity of naturally available polyphenol Quercetin against drug-resistant S. aureus. Micro dilution plating and tube adhesion methods were performed to evaluate the antibiofilm activity of quercetin against S. aureus. Quercetin treatment resulted in remarkably reduction of biofilm in S. aureus cells. Further we performed a study to investigate binding efficacies of quercetin with genes icaB and icaC from ica locus involved in biofilm formation. 3D structure of icaB, icaC and quercetin were retrieved from Protein data bank and PubChem chemical compound database, respectively. All computational simulation were carried out using AutoDock Vina and AutoDockTools (ADT) v 1.5.4. In silico study demonstrated a strong complex formation, large binding constants (K) and low free binding energy (ΔG) between quercetin and icaB (K = 1.63 × 10, ΔG = -7.2 k cal/mol) and icaC (K = 1.98 × 10, ΔG = -8.7 kcal/mol). This in silico analysis indicates that quercetin is capable of targeting icaB and icaC proteins which are essential for biofilm formation in S. aureus. Our study highlighted the antibiofilm activity of quercetin against drug resistant pathogen S.aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2023.104091DOI Listing

Publication Analysis

Top Keywords

antibiofilm activity
12
icab icac
12
drug resistant
8
staphylococcus aureus
8
quercetin
8
activity quercetin
8
biofilm formation
8
s aureus
5
quercetin's antibiofilm
4
antibiofilm effectiveness
4

Similar Publications

Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard to eradicate, is another challenge.

View Article and Find Full Text PDF

Novel silver nanoparticle-based biomaterials for combating biofilms.

Front Microbiol

January 2025

Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center, Animal Health Research Institute, Zagazig, Egypt.

Background: is a significant nosocomial pathogen that has developed resistance to multiple antibiotics, often forming biofilms that enhance its virulence. This study investigated the efficacy of a novel nanoformulation, AgNPs@chitosan-NaF, in combating biofilms.

Methods: Antimicrobial susceptibility testing was performed to assess the antibiotic resistance profile of isolates.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of .

Biofilm

June 2025

Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .

View Article and Find Full Text PDF

Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!