A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Roles of human periodontal ligament stem cells in osteogenesis and inflammation in periodontitis models: Effect of 1α,25-dihydroxyvitamin D. | LitMetric

Periodontitis is a chronic inflammatory disease caused by Porphyromonas gingivalis and other bacteria, and human periodontal ligament stem cells (hPDLSCs) are a promising candidate for the treatment of periodontal supporting tissue defects. This study aimed to investigate the effect of 1α,25-dihydroxyvitamin D [1,25(OH)VitD] on osteogenic differentiation of hPDLSCs in an in vitro periodontitis model and whether it can improve inflammatory status. hPDLSCs were in vitro isolated and identified. After treatment with 1,25(OH)VitD and ultrapure pure Porphyromonas gingivalis lipopolysaccharide (LPS-G), the viability of hPDLSCs was detected using Cell Counting Kit-8, the expressions of osteogenic markers and inflammatory genes using Western blotting and quantitative reverse transcription PCR (qRT-PCR), the levels of inflammatory factors in cells using enzyme linked immunosorbent assay (ELISA), and the fluorescence signal intensity of osteoblastic markers and inflammatory genes in cells using immunofluorescence assay. It was found that 1,25(OH)VitD reversed the inhibition of hPDLSCs proliferation by LPS-G; LPS-G exhibited inhibitory effect on ALP, Runx2, and OPN expressions, and such inhibitory effect was significantly weakened when co-acting with 1,25(OH)VitD. Meanwhile, LPS-G upregulated the expressions of inflammatory genes IL-1β and Casp1, whereas 1,25(OH)VitD antagonized such an effect and improved the inflammatory status. In conclusion, 1,25(OH)VitD can reverse the inhibitory effect of LPS-G on hPDLSCs proliferation and osteogenic differentiation and suppress LPS-G-induced upregulation of inflammatory gene expressions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2023.106347DOI Listing

Publication Analysis

Top Keywords

inflammatory genes
12
human periodontal
8
periodontal ligament
8
ligament stem
8
stem cells
8
inflammatory
8
porphyromonas gingivalis
8
osteogenic differentiation
8
hpdlscs vitro
8
inflammatory status
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!