Urbanization reduces soil microbial network complexity and stability in the megacity of Shanghai.

Sci Total Environ

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:

Published: October 2023

Urbanization is altering the co-occurrence networks of ecological communities that are critical to maintaining ecosystem functions and services. Soil microbial communities play key roles in various ecosystem processes, but how soil microbial co-occurrence networks respond to urbanization is unclear. Here we analyzed co-occurrence networks in soil archaeal, bacterial, and fungal communities from 258 soil sampling sites across the megacity of Shanghai along large urbanization gradients. We found that topological features of microbial co-occurrence networks were strongly altered by urbanization. In particular, microbial communities in more urbanized land-use and highly impervious land cover had less connected and more isolated network structures. These structural variations were accompanied by the dominance of connectors and module hubs affiliated with the Ascomycota in fungi and Chloroflexi in bacteria, and there were greater losses in efficiency and connectivity in urbanized than in remnant land-use in simulated disturbances. Furthermore, even though soil properties (especially soil pH and organic carbon) were major factors shaping topological features of the microbial networks, urbanization still uniquely explained a proportion of the variability, particularly those describing network connections. These results demonstrate that urbanization has clear direct and indirect effects on microbial networks and provide novel insights into how urbanization alters soil microbial communities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164915DOI Listing

Publication Analysis

Top Keywords

soil microbial
16
co-occurrence networks
16
microbial communities
12
urbanization
8
soil
8
microbial
8
megacity shanghai
8
microbial co-occurrence
8
topological features
8
features microbial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!