CCL21/CCR7 axis as a therapeutic target for autoimmune diseases.

Int Immunopharmacol

Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China. Electronic address:

Published: August 2023

Chemokine receptor 7 (CCR7) is a G protein-coupled receptor containing 7 transmembrane domains that is expressed on various cells, such as naive T/B cells, central memory T cells, regulatory T cells, immature/mature dendritic cells (DCs), natural killer cells, and a minority of tumor cells. Chemokine ligand 21 (CCL21) is the known high-affinity ligand that binds to CCR7 and drives cell migration in tissues. CCL21 is mainly produced by stromal cells and lymphatic endothelial cells, and its expression is significantly increased under inflammatory conditions. Genome-wide association studies (GWAS) have shown a strong association between CCL21/CCR7 axis and disease severity in patients with rheumatoid arthritis, sjogren's syndrome, systemic lupus erythematosus, polymyositis, ankylosing spondylitis, and asthma. Disrupting CCL21/CCR7 interaction with antibodies or inhibitors prevents the migration of CCR7-expressing immune and non-immune cells at the site of inflammation and reduces disease severity. This review emphasizes the importance of the CCL21 /CCR7 axis in autoimmune diseases and evaluates its potential as a novel therapeutic target for these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110431DOI Listing

Publication Analysis

Top Keywords

cells
10
ccl21/ccr7 axis
8
therapeutic target
8
autoimmune diseases
8
disease severity
8
axis therapeutic
4
target autoimmune
4
diseases chemokine
4
chemokine receptor
4
receptor ccr7
4

Similar Publications

A series of Dehydroabietylamine (DHAA) C-ring Schiff derivatives, L3-L20, were synthesized and their in vitro cytotoxic activity against the human tumor cell lines cervix HeLa, breast MCF-7, lung A549, liver HepG2, and the nonmalignant cell line umbilical vein HUVEC was investigated. Most of the compounds showed varying degrees of anticancer activity against HeLa cell lines while demonstrating lower toxicity to normal HUVEC cells compared to DHAA and doxorubicin (DOX), especially compound L19, which not only enhanced the anticancer activity of DHAA, but also significantly reduced the toxicity to normal cells, achieving a selectivity index (SI) 118 times higher than that of DHAA and 245 times higher than that of DOX. In addition, compound L19 induced apoptosis in HeLa cells in a dose-dependent manner and arrested the cell cycle in S phase.

View Article and Find Full Text PDF

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.

Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.

View Article and Find Full Text PDF

Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.

Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!