Cysteine is directly associated with a wide range of biological processes. Besides its essential role in protein synthesis, cysteine undergoes a variety of post-translational modifications which modulate several physiological processes. Dysregulated cysteine metabolism is associated with several neurodegenerative disorders. Accordingly, restoring cysteine balance has therapeutic benefits. It is therefore essential to detect the presence of endogenous free cysteine in order to understand different physiological modes of action inside the cell. Here, a carbazole-pyridoxal conjugate system (CPLC) has been developed to detect endogenous free cysteine in the liver and kidney of an adult zebrafish. In consequence, we have also determined the fluorescence intensity statistics of zebrafish kidney and liver images. CPLC interacts in a very fascinating way with two cysteine molecules through chemodosimetric and chemosensing approaches which are conclusively proved by different spectroscopic analyses (UV-vis, fluorescence, NMR) and theoretical calculations (DFT). The detection limit of CPLC towards cysteine is 0.20 μM. Moreover, this preliminary experiment has been done using HuH-7 cell line to check the permeability of CPLC, interaction with cysteine intracellularly, and assessment of the toxicity of CPLC, if any, before performing details in-vivo experiments in zebrafish model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2023.112747 | DOI Listing |
Acta Crystallogr F Struct Biol Commun
February 2025
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.
Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
Background: SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS.
View Article and Find Full Text PDFReprod Med Biol
January 2025
Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences Yamagata University Tsuruoka Japan.
Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from -deficient (KO) mice.
Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.
Results: In 21% O IVM, the KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT.
Front Genet
January 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, China.
Cysteine S-carboxyethylation, a novel post-translational modification (PTM), plays a critical role in the pathogenesis of autoimmune diseases, particularly ankylosing spondylitis. Accurate identification of S-carboxyethylation modification sites is essential for elucidating their functional mechanisms. Unfortunately, there are currently no computational tools that can accurately predict these sites, posing a significant challenge to this area of research.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!