Brain tumor is one of the most aggressive cancers in the world, accurate brain tumor segmentation plays a critical role in clinical diagnosis and treatment planning. Although deep learning models have presented remarkable success in medical segmentation, they can only obtain the segmentation map without capturing the segmentation uncertainty. To achieve accurate and safe clinical results, it is necessary to produce extra uncertainty maps to assist the subsequent segmentation revision. To this end, we propose to exploit the uncertainty quantification in the deep learning model and apply it to multi-modal brain tumor segmentation. In addition, we develop an effective attention-aware multi-modal fusion method to learn the complimentary feature information from the multiple MR modalities. First, a multi-encoder-based 3D U-Net is proposed to obtain the initial segmentation results. Then, an estimated Bayesian model is presented to measure the uncertainty of the initial segmentation results. Finally, the obtained uncertainty maps are integrated into a deep learning-based segmentation network, serving as an additional constraint information to further refine the segmentation results. The proposed network is evaluated on publicly available BraTS 2018 and BraTS 2019 datasets. The experimental results demonstrate that the proposed method outperforms the previous state-of-the-art methods on Dice score, Hausdorff distance and Sensitivity metrics. Furthermore, the proposed components could be easily applied to other network architectures and other computer vision fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107142 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, 2nd Floor, Miami, Fl, 33136, USA.
Purpose: Prolonged length of stay (PLOS) can lead to resource misallocation and higher complication risks. However, there is no consensus on defining PLOS for endoscopic transsphenoidal pituitary surgery (ETPS). Therefore, we investigated the impact of varying PLOS definitions on factors associated with PLOS in patients undergoing ETPS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First People's Hospital of Changzhou, Jiangsu Province, Changzhou 213000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!