Metabolome shifts triggered by chlorine sanitisation induce Escherichia coli on fresh produce into the viable but nonculturable state.

Food Res Int

Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang, 312000, China. Electronic address:

Published: September 2023

Facing the increasing occurrence of "big six" Escherichia coli outbreaks linked to fresh produce, chlorine-based sanitisers are widely used for fresh produce decontamination in recent years. However, latest finding that chlorine may induce E. coli cells into a viable not nonculturable (VBNC) state is bringing a new challenge to the fresh produce industry. VBNC cells are undetectable by the plate count test, and yet they retain pathogenicity and are more antibiotic-resistant than culturable cells. As a result, their eradication is critical to ensure the safety of fresh produce. Understanding VBNC cells at the metabolic level may provide a breakthrough for their eradication. Therefore, this study was carried out to collect the VBNC pathogenic E. coli (O26:H11, O121:H19, and O157:H7) cells from chlorine-treated pea sprouts and characterise them using NMR-based metabolomics. From the globally increased metabolite contents detected in the VBNC E. coli cells as compared to the culturable cells, mechanisms underlying E. coli's VBNC induction were elucidated. These include rendering the energy generation scheme to become more compatible with the lowered energy needs, disaggregating protein aggregates to release amino acids for osmoprotection and later resuscitation, as well as increasing cAMP content to downregulate RpoS. These identified metabolic characteristics can inspire future development of targeted measures for VBNC E. coli cell inhibition. Our methods can also be applied to other pathogens to help lower the risk of overall foodborne diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113084DOI Listing

Publication Analysis

Top Keywords

fresh produce
20
escherichia coli
8
viable nonculturable
8
coli cells
8
vbnc cells
8
culturable cells
8
vbnc coli
8
cells
7
vbnc
7
coli
6

Similar Publications

In recent years, the transfer of more than one embryo has become less frequent to diminish multiple pregnancies. Even so, there is still a risk of one embryo splitting into two or even three. This report presents the case of a triamniotic monochorionic gestation in a 35-year-old woman, obtained after the transfer of a single day 5 embryo that had been previously hatched with a laser and subsequently transferred in a fresh IVF cycle.

View Article and Find Full Text PDF

The shape characteristics of flow hydrographs hold essential information for understanding, monitoring and assessing changes in flow and flood hydrology at reach and catchment scales. However, the analysis of individual hydrographs is time consuming, making the analysis of hundreds or thousands of them unachievable. A method or protocol is needed to ensure that the datasets being generated, and the metrics produced, have been consistently derived and validated.

View Article and Find Full Text PDF

Pineapple ( (L.) Merrill) is among the main fruits produced in West Africa. This is also the case for the Republic of Benin, where pineapple fruit is regarded as an important crop for numerous producers in the Southern part of the country.

View Article and Find Full Text PDF

Batch and semi-continuous fermentation with Parageobacillus thermoglucosidasius DSM 6285 for H production.

Biotechnol Biofuels Bioprod

January 2025

Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.

Background: Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!