Biomarkers to identify women at risk of cervical cancer among those with high-risk HPV infection (hrHPV+) are needed. Deregulated expression of microRNAs (miRNAs) contributes to hrHPV-induced cervical carcinogenesis. We aimed at identifying miRNAs with the capacity to distinguish high (CIN2+) and low (≤ CIN1) grade cervical lesions. We sequenced miRNA libraries from Formalin-Fixed Paraffin-Embedded (FFPE) tissues from women with CIN2+ (n = 10) and age-matched women with ≤ CIN1 (n = 10), randomly and retrospectively selected from a trial that followed women for 24 months after a hrHPV+ test at the screening visit. Five miRNAs differentially expressed were validated by RT-qPCR in an independent set of FFPE tissues with a reviewed diagnosis of CIN2+ (n = 105) and ≤ CIN1 (n = 105). The Ingenuity Pathway Analysis (IPA) was conducted to identify mRNAs inversely correlated with the top 25 differentially expressed miRNAs. Inverse correlations with 401 unique mRNA targets were identified for fourteen of the top 25 differentially expressed miRNAs. Eleven of these miRNAs targeted 26 proteins of pathways deregulated by HPV E6 and E7 oncoproteins and two of them, miR-143-5p and miR-29a-3p, predicted CIN2+ and CIN3+ in the independent validation by RT-qPCR of FFPE tissues from hrHPV-positive women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276834PMC
http://dx.doi.org/10.1038/s41598-023-36421-9DOI Listing

Publication Analysis

Top Keywords

ffpe tissues
12
differentially expressed
12
top differentially
8
expressed mirnas
8
mirnas
7
women
6
mirnas signature
4
signature potential
4
potential biomarkers
4
cervical
4

Similar Publications

Characterizing the expression of novel targets in normal and diseased tissues is a fundamental component of a target validation data package. Often these targets are presented to the pathology team for assessment with bulk or single-cell RNAseq data and limited to no spatial tissue expression data. hybridization to detect mRNA (RNAscope) is a valuable tool to (1) identify cells that may express the target protein and to corroborate protein expression during immunohistochemical (IHC) assay development or (2) to use as surrogate for single-cell expression IHC when antibodies are not available.

View Article and Find Full Text PDF

Intratumoral heterogeneity (ITH) is spatial, phenotypic, or molecular differences within the same tumor that have important implications for accurate tumor classification and assessment of predictive biomarkers. The Canadian Ovarian Experimental Unified Resource (COEUR) has created a cohort of 437 FFPE tissue specimens from 108 tubo-ovarian high-grade serous carcinoma (HGSC) patients to quantify ITH across the anatomical sites and between primary and recurrence. We quantified the ITH of six clinically used immunohistochemical diagnostic and prognostic biomarkers (WT1, p53, p16, PR, CD8, and Ki67).

View Article and Find Full Text PDF

Tumour DNA methylation markers associated with breast cancer survival: a replication study.

Breast Cancer Res

January 2025

Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.

Background: Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.

Methods: This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity).

View Article and Find Full Text PDF

In recent years, significant advancements have been achieved in the development of multiplex imaging methodologies for immunophenotyping, enabling a comprehensive characterization of the complexity of tumor microenvironments. Imaging mass cytometry combines the detection of over 40 cellular targets with spatial information, enabling the identification of not only which cells are present in a tissue but also their localization relative to each other. Here, we present an easy-to-implement imaging mass cytometry workflow that ranges from antibody selection and testing to running a full panel.

View Article and Find Full Text PDF

Background: Invasive breast cancer (BC) is a highly life-threatening disease affecting women world-wide. While its early identification may benefit the provision of more effective therapies, several BC-associated factors may influence BC patients' therapeutic outcomes. Therefore, identifying novel prognostic and therapeutic targets for invasive BC can help with accurate prognosis and therapy-related decisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!