Lithium (Li) is the lightest alkali metal and 27th most abundant element in the earth crust. In traces, the element has medicinal value for various disorders in humans, however, its higher concentrations may lead to treatment-resistant depression and altered thyroid functioning. Quinoa (Chenopodium quinoa) has gained popularity owing to its halophytic nature and its potential use as an alternative to the traditional staple foods. However, quinoa response to Li-salt in terms of growth, Li accumulation potential and health risks associated with consumption of the quinoa seeds grown on Li-contaminated soils has not been explored yet. During this study, quinoa was exposed to various concentrations of Li (0, 2, 4, 8 and 16 mM) at germination as well as seedling stages. The results showed that seed germination was the highest (64% higher than control) at Li concentration of 8 mM. Similarly, at 8 mM doses of Li shoot length, shoot dry weight, root length, root dry weight and grain yield were increased by 130%, 300%, 244%, 858% and 185% than control. It was also revealed that Li increased the accumulation of calcium and sodium in quinoa shoots. Carotenoids contents were increased, but chlorophyll contents remained un-changed under Li application. The activities of antioxidants viz. Peroxide dismutase, catalase and super oxide dismutase were also increased with an increase in the levels of Li in the soil. Estimated daily intake and hazard quotient of Li in quinoa were less than the threshold level. It was concluded that Li concentration of 8 mM is useful for quinoa growth and it can be successfully grown on Li contaminated soils without causing any human health risks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-023-01659-9DOI Listing

Publication Analysis

Top Keywords

quinoa
10
quinoa chenopodium
8
chenopodium quinoa
8
human health
8
health risks
8
concentration 8 mm
8
dry weight
8
assessment lithium
4
lithium bioaccumulation
4
bioaccumulation quinoa
4

Similar Publications

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

In this study, quinoa, which is a good alternative for celiacs, was tried to be used instead of flour by sprouting it and drying it in the airfryer. Flour obtained from quinoa seeds prevents spreading and hardens the product. It was predicted that this problem could be overcome by germination and drying in the airfryer.

View Article and Find Full Text PDF

Alteration of the gut microbiota and its metabolites plays a key role in the development of inflammatory bowel disease (IBD). Here, we investigated the mechanism of saponins, a byproduct from quinoa (SQ) processing, in regulating IBD. SQ ameliorated gut microbiota dysbiosis revealed by 16S rRNA sequencing and improved colonic antioxidant activities and barrier integrity in dextran sulfate sodium (DSS)-treated mice.

View Article and Find Full Text PDF

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!