Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2022.167919DOI Listing

Publication Analysis

Top Keywords

functional amyloids
16
amyloid fibril
12
amyloid
7
functional
4
amyloids supramolecular
4
supramolecular amyloid
4
assembly
4
amyloid assembly
4
assembly controls
4
controls biological
4

Similar Publications

Background/objectives: Amyloid peptides, whose accumulation in the brain as senile plaques is associated with the onset of Alzheimer's disease, are also found in cerebral vessels and in circulation. In the bloodstream, amyloid peptides promote platelet adhesion, activation, oxidative stress, and thrombosis, contributing to the cardiovascular complications observed in Alzheimer's disease patients. Natural compounds, such as curcumin, are known to modulate platelet activation induced by the hemostatic stimuli thrombin and convulxin.

View Article and Find Full Text PDF

Systematic Alzheimer's disease (AD) is a neurodegenerative disease increasingly prevalent in the aging population. AD is characterized by pathological features such as -amyloid (A) plaque accumulation, tau neurofibrillary tangles formation, oxidative stress, an impaired cholinergic system, and neuroinflammation. Many therapeutic drugs have been developed to slow the progression of AD by targeting these pathological mechanisms.

View Article and Find Full Text PDF

Targeting Iron Responsive Elements (IREs) of APP mRNA into Novel Therapeutics to Control the Translation of Amyloid-β Precursor Protein in Alzheimer's Disease.

Pharmaceuticals (Basel)

December 2024

Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia.

The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited.

View Article and Find Full Text PDF

Bgl2p is a major, conservative, constitutive glucanosyltransglycosylase of the yeast cell wall (CW) with amyloid amino acid sequences, strongly non-covalently anchored in CW, but is able to leave it. In the environment, Bgl2p can form fibrils and/or participate in biofilm formation. Despite a long study, the question of how Bgl2p is anchored in CW remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!