Vital for Viruses: Intrinsically Disordered Proteins.

J Mol Biol

Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:

Published: June 2023

Viruses infect all kingdoms of life; their genomes vary from DNA to RNA and in size from 2kB to 1 MB or more. Viruses frequently employ disordered proteins, that is, protein products of virus genes that do not themselves fold into independent three-dimensional structures, but rather, constitute a versatile molecular toolkit to accomplish a range of functions necessary for viral infection, assembly, and proliferation. Interestingly, disordered proteins have been discovered in almost all viruses so far studied, whether the viral genome consists of DNA or RNA, and whatever the configuration of the viral capsid or other outer covering. In this review, I present a wide-ranging set of stories illustrating the range of functions of IDPs in viruses. The field is rapidly expanding, and I have not tried to include everything. What is included is meant to be a survey of the variety of tasks that viruses accomplish using disordered proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656058PMC
http://dx.doi.org/10.1016/j.jmb.2022.167860DOI Listing

Publication Analysis

Top Keywords

disordered proteins
16
dna rna
8
range functions
8
viruses
5
vital viruses
4
viruses intrinsically
4
disordered
4
intrinsically disordered
4
proteins
4
proteins viruses
4

Similar Publications

: Proper nutrition and hydration are essential for the health, growth, and athletic performance of student-athletes. Adequate energy availability and sufficient intake of macro- and micronutrients support adolescent development, prevent nutrient deficiencies, and reduce the risk of disordered eating. These challenges are particularly relevant to student-athletes, who are vulnerable to nutrition misinformation and often exhibit limited nutrition knowledge.

View Article and Find Full Text PDF

() has caused huge economic losses to the cattle industry. The interaction between and host cells is elucidated by screening and identifying the target protein of adhesin on the surface of the host cell membrane. However, the response mechanism of embryonic bovine lung (EBL) cells to infection is not yet fully understood.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions.

View Article and Find Full Text PDF

This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!