Several water and wastewater technologies have been implored for the removal of dyes during wastewater treatments; however; different types have been reportedly found in surface and groundwater systems. Hence, there is a need to investigate other water treatment technologies for the complete remediation of dyes in aquatic environments. In this study, novel chitosan-based polymer inclusion membranes (PIMs) were synthesized for the removal of malachite green dye (MG) which is a recalcitrant of great concern in water. Two types of PIMs were synthesized in this study, the first PIM (PIMs-A) was composed of chitosan, bis-(2-ethylhexyl) phosphate (B2EHP), and dioctyl phthalate (DOP). While, the second PIMs (PIMs-B) were composed of chitosan, Aliquat 336, and DOP. The physico-thermal stability of the PIMs was investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), both PIMs demonstrated good stability with a weak intermolecular force of attraction amongst the various components of the membranes. The effects of the initial concentration of MG, pH of the MG solution, stripping solution, and time were investigated. At optimum conditions, both membranes (PIM-A and B) recorded the highest efficiencies of 96 % and 98 % at pH 4 and initial contaminants concentration of 50 mg/L, respectively. Finally, both PIMs were used for the removal of MG in different environmental samples (river water, seawater, and tap water) with an average removal efficiency of 90 %. Thus, the investigated PIMs can be considered a potential suitable technique for the removal of dyes and other contaminants from aquatic matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125400 | DOI Listing |
Int J Biol Macromol
January 2025
Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India.
Int J Biol Macromol
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!