As a first-line drug for breast cancer chemotherapy, the effectiveness of doxorubicin (DOX) is challenged by high doses and high toxicity. Studies showed the combination of Tanshinone IIA (TSIIA) and DOX could enhance the efficacy of DOX for cancer and reduce the toxic effects to normal tissues. Unfortunately, free drugs are easily metabolized in the systemic circulation, which are less prone to aggregation at the tumor site to exert anticancer efficacy. In present study, we prepared a carboxymethyl chitosan-based hypoxia-responsive nanoparticles loaded with DOX and TSIIA for the treatment of breast cancer. The results demonstrated that these hypoxia-responsive nanoparticles not only improved the delivery efficiency of the drugs but also enhanced the therapeutic efficacy of DOX. The average size of nanoparticles was about 200-220 nm, the optimal drug loading and encapsulation efficiency of TSIIA in DOX/TSIIA NPs were 9.06 % and 73.59 %, respectively. Hypoxia-responsive behavior were recorded in vitro, while the synergistic efficacy is significantly exhibited in vivo and the tumor inhibitory rate was 85.87 %. Notably, TUNEL assay and immunofluorescence staining verified that the combined nanoparticles exerted a synergistic anti-tumor effect by inhibiting tumor fibrosis, decreasing the expression of HIF-1α and inducing tumor cell apoptosis. Collectively, this carboxymethyl chitosan-based hypoxia-responsive nanoparticles could have promising application prospect for effective breast cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125362 | DOI Listing |
Int J Biol Macromol
January 2025
National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Oxidative stress is a major contributor to the difficulties in chronic wound healing. Although antioxidant hydrogels have been developed, they are still insufficient for addressing the entire chronic wound healing process. In this study, a lutein-loaded multifunctional hydrogel dressing (Lutein/CMC/PVP/TA, Lutein/CPT) with synergistic antioxidation properties was developed by hydrogen bonding and electrostatic crosslinking of tannic acid (TA) with carboxymethyl chitosan (CMC) and polyvinylpyrrolidone (PVP).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:
Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.
View Article and Find Full Text PDFJ Food Sci
January 2025
Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China.
The applications of resveratrol (RES) and puerarin (PUE) with notable physiological functions are greatly limited in functional food and pharmaceutical industries due to their poor water solubility and chemical instability. Accordingly, co-loading of RES and PUE into chitosan-based nanoparticles (NPs) is performed here by an anti-solvent method to improve their bioavailability. The fabricated NPs at 8:1 mass ratio of carboxymethyl chitosan (CMC) to chitosan hydrochloride (CHC) with the particle size of 375.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China. Electronic address:
Plant-derived antibacterial agents are increasingly pivotal in mitigating the escalating threat posed by pathogenic microorganisms. Dihydromyricetin (DMY), a plant bioactive compound prevalent in Ampelopsis grossedentata, exhibits remarkable antibacterial properties. However, its poor solubility in water significantly hinders its application in antibacterial therapies, necessitating the exploration of suitable carriers for the loading and sustained release of DMY.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!