A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Eco-friendly cellulose-based hydrogel functionalized by NIR-responsive multimodal antibacterial polymeric ionic liquid as platform for promoting wound healing. | LitMetric

Eco-friendly cellulose-based hydrogel functionalized by NIR-responsive multimodal antibacterial polymeric ionic liquid as platform for promoting wound healing.

Int J Biol Macromol

Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, PR China. Electronic address:

Published: July 2023

With the trend of sustainable development and the complex medical environment, there is a strong demand for multimodal antibacterial cellulose wound dressing (MACD) with photothermal therapy (PTT). Herein, a novel MACD fabrication strategy with PTT was proposed and implemented through graft polymerization of an imidazolium ionic liquid monomer containing iron complex anion structure. The fabricated hydrogels exhibited excellent antibacterial properties because of the efficient photothermal conversion ability (68.67 %) of ionic liquids and the intrinsic structural characteristic of quaternary ammonium salts. The antibacterial ratio of cellulosic hydrogel dressings to S. aureus and E. coli could reach 99.57 % and 99.16 %, respectively. Additionally, the fabricated hydrogels demonstrated extremely low hemolysis rates (<5 %) and excellent cell viability (~>85 %). Furthermore, in vivo antibacterial experimental results proved that the fabricated antibacterial dressings could significantly accelerate wound healing. Therefore, the proposed strategy would provide a new method of designing and preparing high-performance cellulose wound dressings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125353DOI Listing

Publication Analysis

Top Keywords

multimodal antibacterial
8
ionic liquid
8
wound healing
8
cellulose wound
8
fabricated hydrogels
8
antibacterial
6
eco-friendly cellulose-based
4
cellulose-based hydrogel
4
hydrogel functionalized
4
functionalized nir-responsive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!