A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanomedicines: An approach to treat placental insufficiency and the current challenges. | LitMetric

Nanomedicines: An approach to treat placental insufficiency and the current challenges.

J Control Release

University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands.

Published: August 2023

Introduction: Preeclampsia and fetal growth restriction are common pregnancy complications that significantly impact perinatal health and offspring development later in life. The origin of these complex syndromes overlap in placental insufficiency. Progress in developing treatments for maternal, placental or fetal health is mainly limited by the risk of maternal and fetal toxicity. Nanomedicines are a promising approach to safely treat pregnancy complications since they can regulate drug interaction with the placenta to enhance efficacy of the treatment while minimizing exposure of the fetus.

Methods: This narrative review discusses the current developments and challenges of nanomedicines during pregnancy with a focus on preclinical models of placenta insufficiency syndromes. Firstly, we outline the safety requirements and potential therapeutic maternal and placental targets. Secondly, we review the prenatal therapeutic effects of the nanomedicines that have been tested in experimental models of placental insufficiency syndromes.

Results: The majority of liposomes and polymeric drug delivery system show promising results regarding the prevention of trans-placental passage nanomedicines in uncomplicated and complicated pregnancies. The others two studied classes, quantum dots and silicon nanoparticles, have been investigated to a limited extent in placental insufficiency syndromes. Characteristics of the nanoparticles such as charge, size, and timing of administration have been shown to influence the trans-placental passage. The few available preclinical therapeutic studies on placental insufficiency syndromes predominantly show beneficial effects of nanomedicines on both maternal and fetal health, but demonstrate contradicting results on placental health. Interpretation of results in this field is complicated by the fact that results are influenced by the choice of animal species and model, gestational age, placental maturity and integrity, and nanoparticle administration route.

Conclusion: Nanomedicines form a promising therapeutic approach during (complicated) pregnancies mainly by reducing fetal toxicity and regulating drug interaction with the placenta. Different nanomedicines have been proven to effectively prevent trans-placental passage of encapsulated agents. This can be expected to dramatically reduce risks for fetal adverse effects. Furthermore, a number of these nanomedicines positively impacted maternal and fetal health in animal models for placental insufficiency. Demonstrating that effective drug concentrations can be reached in the target tissue. While these first animal studies are encouraging, more research is needed to better understand the influence of the pathophysiology of this multi-factorial disease before implementation in clinical practice can be considered. Therefore, extensive evaluation of safety and efficacy of these targeted nanoparticles is needed within multiple animal, in vitro, and/or ex vivo models. This may be complemented by diagnostic tools to assess the disease status to identify the best time to initiate treatment. Together these investigations should contribute to building confidence in the safety of nanomedicines for treating mother and child, as safety has, understandably, the highest priority in this sensitive patient groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.06.003DOI Listing

Publication Analysis

Top Keywords

placental insufficiency
24
fetal health
12
maternal fetal
12
insufficiency syndromes
12
trans-placental passage
12
nanomedicines
10
placental
10
pregnancy complications
8
maternal placental
8
fetal toxicity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!