Incense burning is a common religious activity that emits abundant gaseous and particulate pollutants into the atmosphere. During their atmospheric lifetime, these gases and particles are subjected to oxidation, leading to the formation of secondary pollutants. We examined the oxidation of incense burning plumes under O exposure and dark condition using an oxidation flow reactor connected to a single particle aerosol mass spectrometer (SPAMS). Nitrate formation was observed in incense burning particles, mainly attributable to the ozonolysis of nitrogen-containing organic compounds. With UV on, nitrate formation was significantly enhanced, likely due to HNO/HNO/NOx uptake triggered by OH chemistry, which is more effective than ozone oxidation. The extent of nitrate formation is insensitive to O and OH exposure, possibly due to the diffusion limitation on interfacial uptake. The O-UV-aged particles are more oxygenated and functionalized than O-Dark-aged particles. Oxalate and malonate, two typical secondary organic aerosol (SOA) components, were found in O-UV-aged particles. Our work reveals that nitrate, accompanied by SOA, can rapidly form in incense-burning particles upon photochemical oxidation in the atmosphere, which could deepen our understanding of air pollution caused by religious activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!