Interfacial damage has a high impact on the loosening of the acetabular cup. However, monitoring this damage induced by the variations in loading conditions, such as the angle, amplitude, and frequency in vivo, is challenging. In this study, we evaluated the risk of loosening of the acetabular cup due to interfacial damages induced by the deviation in loading conditions and amplitudes. A three-dimensional model of the acetabular cup component was developed, and the interfacial crack growth between the cup and the bone was modeled using a fracture mechanics approach, which simulated the extent of interfacial damage and associated cup displacement. The interfacial delamination mechanism changed with the increasing inclination angle, wherein a fixation angle of 60° exhibited the largest area of contact loss. The compressive strain of embedding the simulated bone at the remaining bonding area accumulated as the lost contact area widened. Such interfacial damages, namely, the growth of the lost contact area and accumulated compressive strain in the simulated bone, promoted both embedding and rotational displacement of the acetabular cup. In the worst case of a fixation angle of 60°, the total displacement of the acetabular cup exceeded the limit of the modified safe zone, suggesting a quantitative risk of dislocation of the acetabular cup induced by the accumulated interfacial damage. Furthermore, nonlinear regression analyses between the degree of displacement of the acetabular cup and the extent of the two types of interfacial damage demonstrated that the interactive effect of the fixation angle with the loading amplitude showed a significant effect on increasing cup displacement. These findings suggest that proper control of the fixation angle during operation is useful in preventing the loosening of the hip joint.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.105945DOI Listing

Publication Analysis

Top Keywords

acetabular cup
28
interfacial damage
16
fixation angle
16
displacement acetabular
12
cup
10
interfacial
8
loosening acetabular
8
loading conditions
8
interfacial damages
8
cup displacement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!