This study aimed to investigate the mechanism of lung tissue YKL-40 promoting the interstitial transformation of alveolar epithelial cells in mice with idiopathic pulmonary fibrosis and its effect on the level of TGF-β1. For this purpose, Forty SPF SD mice were randomly divided into 4 groups. They were the blank control group (CK group), virus-negative control group (YKL-40-NC group), YKL-40 knockdown group (YKL-40-inhibitor group) and YKL-40 overexpression group (YKL-40-mimics group), respectively. The mRNA expressions of alveolar epithelial cell mesenchymal transformation-related proteins, pulmonary fibrosis-related factors and TGF-β1-related pathway proteins in the above four groups of mice were compared to determine the mechanism of the promotion of alveolar epithelial cell mesenchymal transformation by YKL-40 in the lung tissues of mice with idiopathic pulmonary fibrosis and the effect of YKL-40 on the level of TGF-β1. The results showed that in terms of lung wet/dry weight ratio, the YKL-40-NC group, YKL-40-inhibitor group and YKL-40-mimics group were significantly increased compared with the CK group (P<0.05). About YKL-40 protein expression, compared with the CK group, AOD value and YKL-40 protein expression in the YKL-40-NC group, YKL-40-inhibitor group and YKL-40-mimics group were significantly increased (P<0.05), and compared with YKL-40-NC group, The AOD value and YKL-40 protein expression in YKL-40-inhibitor group were significantly decreased, while the AOD value and YKL-40 protein expression in YKL-40-mimics group were significantly increased (P<0.05), suggesting successful lentivirus transfection. Compared with the CK group, β-catenin and E-cadherin in the alveolar epithelial cells were significantly increased, while Pro-SPC was significantly decreased (P<0.05). The mRNA expression of pulmonary fibrosis-related factors showed that compared with the CK group, the mRNA expression of vimimin and hydroxyproline was significantly increased, while the mRNA expression of E-cadherin was decreased (P<0.05). However, the mRNA expressions of vimimin and hydroxyproline in the YKL-40-inhibitor group were significantly decreased, but the mRNA expression of E-cadherin was significantly increased. Compared with CK group, the protein expressions of TGF-β1, Smad3, Smad7 and α-Sma in the CK group were significantly increased (P<0.05). The protein expressions of TGF-β1, Smad3, Smad7 and α-SMA in the YKL-40-mimics group were significantly increased, but the protein expressions of TGF-β1, Smad3, Smad7 and α-SMA in YKL-40-inhibitor group were significantly decreased (P<0.05). In general, overexpression of YKL-40 can promote the progression of pulmonary fibrosis and the interstitial transformation of alveolar epithelial cells in mice with idiopathic fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14715/cmb/2023.69.4.27 | DOI Listing |
Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.
View Article and Find Full Text PDFEnviron Int
January 2025
Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium. Electronic address:
Sea spray aerosol (SSA) is a complex mixture of natural substances that can be inhaled by coastal residents. Previous studies have suggested that SSA may have positive effects on human health, but the molecular mechanisms and the factors influencing these effects are poorly understood. In this study, we exposed human bronchial epithelial cells (BEAS-2B) to natural SSA samples, collected monthly using quartz microfiber filters mounted on tripods within 15 m of the waterline, with air drawn through pumps, throughout a one-year period at the Ostend coast, Belgium, and measured cellular gene expression changes using RNA sequencing.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of thoracic and cardiovascular surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, China.
Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.
View Article and Find Full Text PDFNagoya J Med Sci
November 2024
Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Peribronchiolar metaplasia is an uncommon lesion characterized by fibrosis and bronchiolar epithelial cell proliferation along the peribronchiolar alveolar walls, primarily in response to bronchiolar and peribronchiolar injuries. Peribronchiolar metaplasia usually appears as ground glass nodules or sub-solid nodules on computed tomography. However, we present an exceptional case of peribronchiolar metaplasia that appeared as a solitary solid nodule on computed tomography.
View Article and Find Full Text PDFIndian J Pathol Microbiol
January 2025
Department of Oncopathology, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Varanasi, Uttar Pradesh, India.
ALK-positive large B-cell lymphoma (ALK+ LBCL) is a rare neoplasm with an aggressive course and poor therapeutic response to the standard R-CHOP regimen. Owing to its negativity for usual B- and T-cell markers and immunopositivity for epithelial markers, it can be easily misdiagnosed if it is not contemplated. To study the clinicopathological parameters of cases of ALK+ LBCL diagnosed at our institution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!