Inertial active ratchet: Simulation versus theory.

Phys Rev E

Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram-695581, India.

Published: May 2023

We present the inertial active dynamics of an Ornstein-Uhlenbeck particle in a piecewise sawtooth ratchet potential. Using the Langevin simulation and matrix continued fraction method (MCFM), the particle transport, steady-state diffusion, and coherence in transport are investigated in different parameter regimes of the model. Spatial asymmetry is found to be a key criterion for the possibility of directed transport in the ratchet. The MCFM results for net particle current of overdamped dynamics of the particle agree well with the simulation results. The simulated particle trajectories for the inertial dynamics and the corresponding position and velocity distribution functions reveal that the system passes through an activity-induced transition in the transport from the running phase to the locked phase of the dynamics. This is further corroborated by the mean square displacement (MSD) calculations, where the MSD gets suppressed with increase in the persistent duration of activity or self-propulsion in the medium and finally approaches zero for a very large value of self propulsion time. The nonmonotonic behavior of the particle current and Péclet number with self-propulsion time confirms that the particle transport and its coherence can be enhanced or reduced by fine tuning the persistent duration of activity. Moreover, for intermediate ranges of self-propulsion time as well as mass of the particle, even though the particle current shows a pronounced unusual maximum with mass, there is no enhancement in the Péclet number, instead the Péclet number decreases with mass, confirming the degradation of coherence in transport.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.054601DOI Listing

Publication Analysis

Top Keywords

particle current
12
péclet number
12
particle
9
inertial active
8
particle transport
8
coherence transport
8
persistent duration
8
duration activity
8
self-propulsion time
8
transport
6

Similar Publications

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

Semiconducting Overoxidized Polypyrrole Nano-Particles for Photocatalytic Water Splitting.

Small

January 2025

UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.

Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.

View Article and Find Full Text PDF

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.

View Article and Find Full Text PDF

T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection.

Vaccines (Basel)

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.

Background: The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections.

Methods: In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (SocHocT4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens.

View Article and Find Full Text PDF

Regulating Immune Responses Induced by PEGylated Messenger RNA-Lipid Nanoparticle Vaccine.

Vaccines (Basel)

December 2024

Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.

Messenger RNA (mRNA)-based therapeutics have shown remarkable progress in the treatment and prevention of diseases. Lipid nanoparticles (LNPs) have shown great successes in delivering mRNAs. After an mRNA-LNP vaccine enters a cell via an endosome, mRNA is translated into an antigen, which can activate adaptive immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!