A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flow-driven control of pulse width in excitable media. | LitMetric

Flow-driven control of pulse width in excitable media.

Phys Rev E

Center for Protein Assemblies (CPA) and Department of Bioscience, School of Natural Sciences, Technische Universität München, Garching b. München 85748, Germany.

Published: May 2023

Models of pulse formation in nerve conduction have provided manifold insight not only into neuronal dynamics but also the nonlinear dynamics of pulse formation in general. Recent observation of neuronal electrochemical pulses also driving mechanical deformation of the tubular neuronal wall, and thereby generating ensuing cytoplasmic flow, now question the impact of flow on the electrochemical dynamics of pulse formation. Here, we theoretically investigate the classical Fitzhugh-Nagumo model, now accounting for advective coupling between the pulse propagator typically describing membrane potential and triggering mechanical deformations, and thus governing flow magnitude, and the pulse controller, a chemical species advected with the ensuing fluid flow. Employing analytical calculations and numerical simulations, we find that advective coupling allows for a linear control of pulse width while leaving pulse velocity unchanged. We therefore uncover an independent control of pulse width by fluid flow coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.054218DOI Listing

Publication Analysis

Top Keywords

control pulse
12
pulse width
12
pulse formation
12
pulse
9
dynamics pulse
8
advective coupling
8
fluid flow
8
flow
5
flow-driven control
4
width excitable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!