Nonlinear dynamics and bifurcations of a planar undulating magnetic microswimmer.

Phys Rev E

Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel.

Published: May 2023

Swimming microorganisms such as flagellated bacteria and sperm cells have fascinating locomotion capabilities. Inspired by their natural motion, there is an ongoing effort to develop artificial robotic nanoswimmers for potential in-body biomedical applications. A leading method for actuation of nanoswimmers is by applying a time-varying external magnetic field. Such systems have rich and nonlinear dynamics that call for simple fundamental models. A previous work studied forward motion of a simple two-link model with a passive elastic joint, assuming small-amplitude planar oscillations of the magnetic field about a constant direction. In this work, we found that there exists a faster, backward motion of the swimmer with very rich dynamics. By relaxing the small-amplitude assumption, we analyze the multiplicity of periodic solutions, as well as their bifurcations, symmetry breaking, and stability transitions. We have also found that the net displacement and/or mean swimming speed are maximized for optimal choices of various parameters. Asymptotic calculations are performed for the bifurcation condition and the swimmer's mean speed. The results may enable significantly improving the design aspects of magnetically actuated robotic microswimmers.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.054211DOI Listing

Publication Analysis

Top Keywords

nonlinear dynamics
8
magnetic field
8
dynamics bifurcations
4
bifurcations planar
4
planar undulating
4
undulating magnetic
4
magnetic microswimmer
4
microswimmer swimming
4
swimming microorganisms
4
microorganisms flagellated
4

Similar Publications

Non-linear relationship between urinary creatinine and diabetic kidney disease: implications for clinical practice.

BMC Nephrol

January 2025

Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, China.

Objective: This study aims to investigate the relationship between urinary creatinine (UCr) and the risk and severity of Diabetic Kidney Disease (DKD) in patients with Type 2 Diabetes Mellitus (T2DM). The goal is to establish UCr as a potential biomarker for early DKD detection and severity assessment.

Methods: A retrospective cross-sectional analysis was conducted using medical records of T2DM patients.

View Article and Find Full Text PDF

This paper proposes an adaptive output feedback full state constrain (FSC) controller based on the adaptive neural disturbance observer (ANDO) for a nonlinear electro-hydraulic system (NEHS) with unmodeled dynamics. The Barrier Lyapunov Functions (BLFs) are utilized to ensure that all states of the system are specified within the constraints, and the approximation ability of radial basis function neural networks (RBFNNs) is used to cope with the unknown nonlinear functions. An adaptive neural compensation disturbance observer is elaborated to estimate the compound disturbance and oil leakage fault, effectively addressing these negative effects.

View Article and Find Full Text PDF

Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.

View Article and Find Full Text PDF

This work explores the mathematical technique known as the Hirota bilinear transformation to investigate different wave behaviors of the nonlinear Rosenau equation, which is fundamental in the study of wave occurrences in a variety of physical systems such as fluid dynamics, plasma physics, and materials science, where nonlinear dynamics and dispersion offer significant functions. This equation was suggested to describe the dynamic behaviour of dense discrete systems. We use Mathematica to investigate these wave patterns and obtained variety of wave behaviors, such as M-shaped waves, mixed waves, multiple wave forms, periodic lumps, periodic cross kinks, bright and dark breathers, and kinks and anti-kinks.

View Article and Find Full Text PDF

This paper proposes an innovative approach to address the challenges of dynamic balance and external disturbances in ballbot systems, overcoming the limitations of conventional Proportional Integral Derivative (PID) controllers and their variants in handling highly nonlinear dynamics and external forces. Traditional PID controllers and their variants often have difficulty adapting to complex, real-time dynamic systems, leading to performance degradation under varying conditions. A nonlinear PID controller-based Takagi-Sugeno-Kang 3D Cerebellar Model Articulation Controller (TSK3DCMAC) is introduced to overcome these shortcomings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!