Sudden death, or unexpected natural death of a healthy individual, is a serious problem in all nations. Sudden cardiac death (SCD) mainly due to ischemic heart diseases is the top cause of sudden death. However, there are pathophysiological conditions, referred to as sudden arrhythmic death syndrome, in which no apparent lesion can be identified even after complete conventional or ordinary autopsy. While postmortem genetic analyses have accumulated evidence about underlying genetic abnormality in such cases, the precise relationships between genetic background and the phenotype have been largely elusive. In this study, a retrospective investigation of 17 autopsy cases in which lethal arrhythmia was suspected to be the cause of death was carried out. Genetic analysis focusing on 72 genes reported to be associated with cardiac dysfunctions was performed, in combination with detailed histopathological and postmortem imaging examination, and a family study. As a result, in two cases of suspected arrhythmogenic cardiomyopathy (ACM), we found a nonsense variant in PKP2 and frameshift variant in TRPM4 gene. In contrast, the other 15 cases showed no morphological changes in the heart despite the presence of a frameshift variant and several missense variants, leaving the clinical significance of these variants obscure. The findings of the present study suggest that nonsense and frameshift variants could be involved in the morphological abnormality in cases of SCD due to ACM, while missense variants alone rarely contribute to massive structural changes in the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00414-023-03037-7DOI Listing

Publication Analysis

Top Keywords

postmortem genetic
8
genetic analysis
8
sudden cardiac
8
nonsense frameshift
8
frameshift variants
8
arrhythmogenic cardiomyopathy
8
sudden death
8
abnormality cases
8
frameshift variant
8
changes heart
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!