A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raman Spectroscopy and Machine Learning Enables Estimation of Articular Cartilage Structural, Compositional, and Functional Properties. | LitMetric

Objective: To differentiate healthy from artificially degraded articular cartilage and estimate its structural, compositional, and functional properties using Raman spectroscopy (RS).

Design: Visually normal bovine patellae (n = 12) were used in this study. Osteochondral plugs (n = 60) were prepared and artificially degraded either enzymatically (via Collagenase D or Trypsin) or mechanically (via impact loading or surface abrasion) to induce mild to severe cartilage damage; additionally, control plugs were prepared (n = 12). Raman spectra were acquired from the samples before and after artificial degradation. Afterwards, reference biomechanical properties, proteoglycan (PG) content, collagen orientation, and zonal (%) thickness of the samples were measured. Machine learning models (classifiers and regressors) were then developed to discriminate healthy from degraded cartilage based on their Raman spectra and to predict the aforementioned reference properties.

Results: The classifiers accurately categorized healthy and degraded samples (accuracy = 86%), and successfully discerned moderate from severely degraded samples (accuracy = 90%). On the other hand, the regression models estimated cartilage biomechanical properties with reasonable error (≤ 24%), with the lowest error observed in the prediction of instantaneous modulus (12%). With zonal properties, the lowest prediction errors were observed in the deep zone, i.e., PG content (14%), collagen orientation (29%), and zonal thickness (9%).

Conclusion: RS is capable of discriminating between healthy and damaged cartilage, and can estimate tissue properties with reasonable errors. These findings demonstrate the clinical potential of RS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518284PMC
http://dx.doi.org/10.1007/s10439-023-03271-5DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
8
machine learning
8
articular cartilage
8
structural compositional
8
compositional functional
8
functional properties
8
artificially degraded
8
cartilage estimate
8
raman spectra
8
biomechanical properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!