A route to increase the efficiency of thin film solar cells is improving the light-trapping capacity by texturing the top Transparent Conductive Oxide (TCO) so that the sunlight reaching the solar absorber scatters into multiple directions. In this study, Indium Tin Oxide (ITO) thin films are treated by infrared sub-picosecond Direct Laser Interference Patterning (DLIP) to modify the surface topography. Surface analysis by scanning electron microscopy and confocal microscopy reveals the presence of periodic microchannels with a spatial period of 5 µm and an average height between 15 and 450 nm decorated with Laser-Induced Periodic Surface Structures (LIPSS) in the direction parallel to the microchannels. A relative increase in the average total and diffuse optical transmittances up to 10.7% and 1900%, respectively, was obtained in the 400-1000 nm spectral range as an outcome of the interaction of white light with the generated micro- and nanostructures. The estimation of Haacke's figure of merit suggests that the surface modification of ITO with fluence levels near the ablation threshold might enhance the performance of solar cells that employ ITO as a front electrode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275878PMC
http://dx.doi.org/10.1038/s41598-023-37042-yDOI Listing

Publication Analysis

Top Keywords

indium tin
8
tin oxide
8
thin films
8
sub-picosecond direct
8
direct laser
8
laser interference
8
interference patterning
8
solar cells
8
optoelectronic performance
4
performance indium
4

Similar Publications

Modification at ITO/NiO Interface with MoS Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

ChemSusChem

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.

View Article and Find Full Text PDF

We developed a two-transistor, zero-capacitor (2T0C) gain-cell memory featuring a self-aligned top-gate-structured thin-film transistor (TFT) for the first time. The proposed indium tin zinc oxide (ITZO) channel-incorporated architecture was specifically engineered to minimize parasitic capacitance for achieving long-retention 2T0C memory operations. A typical 2T0C structure features five types of parasitic capacitances; however, the proposed SATG design effectively used an essential gate insulator capacitance ( ) and reduced four nonessential capacitances ( , , , and ) to virtually zero.

View Article and Find Full Text PDF

In this work, a specially designed multilayer indium tin oxide (ITO) mesh structure metasurface was proposed as a microwave absorber, achieving both excellent angle-insensitive broadband absorption and high shielding effectiveness (SE). It features gradually changing surface resistance ( ), to expand the absorption bandwidth while maintaining high SE. Also, a folded square ring metasurface was designed to effectively suppress surface wave grating lobes, as well as to reduce the unit size of the metasurface and thus the absorber.

View Article and Find Full Text PDF

The inertial element of a solid block is commonly used as the proof mass in traditional accelerometers. However, it is challenging to accommodate both the high-density solid-state proof mass and the highly elastic component simultaneously in a miniature sensor, which makes it difficult for the sensors to maintain comparable sensing performance at a miniaturized size. Here, a novel, to the best of our knowledge, liquid metal-based fiber optic accelerometer (LMFOA) is proposed for the first time to meet this requirement.

View Article and Find Full Text PDF

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!