In forest genetic improvement programs for non-domesticated species, limited knowledge of kinship can compromise or make the estimation of variance components and genetic parameters of traits of interest unfeasible. We used mixed models and genomics (in the latter, considering additive and non-additive effects) to evaluate the genetic architecture of 12 traits in juçaizeiro for fruit production. A population of 275 genotypes without genetic relationship knowledge was phenotyped over three years and genotyped by whole genome SNP markers. We have verified superiority in the quality of the fits, the prediction accuracy for unbalanced data, and the possibility of unfolding the genetic effects into their additive and non-additive terms in the genomic models. Estimates of the variance components and genetic parameters obtained by the additive models may be overestimated since, when considering the dominance effect in the model, there are substantial reductions in them. The number of bunches, fresh fruit mass of bunch, rachis length, fresh mass of 25 fruits, and amount of pulp were strongly influenced by the dominance effect, showing that genomic models with such effect should be considered for these traits, which may result in selective improvements by being able to return more accurate genomic breeding values. The present study reveals the additive and non-additive genetic control of the evaluated traits and highlights the importance of genomic information-based approaches for populations without knowledge of kinship and experimental design. Our findings underscore the critical role of genomic data in elucidating the genetic control architecture of quantitative traits, thereby providing crucial insights for driving species' genetic improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276026PMC
http://dx.doi.org/10.1038/s41598-023-36970-zDOI Listing

Publication Analysis

Top Keywords

genetic control
12
additive non-additive
12
genetic
10
genetic improvement
8
knowledge kinship
8
variance components
8
components genetic
8
genetic parameters
8
genomic models
8
genomic
6

Similar Publications

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

Coding Variants of the Genitourinary Development Gene Carry High Risk for Prostate Cancer.

JCO Precis Oncol

January 2025

Medical Research Service, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN.

Purpose: Considerable genetic heterogeneity is currently thought to underlie hereditary prostate cancer (HPC). Most families meeting criteria for HPC cannot be attributed to currently known pathogenic variants.

Methods: To discover pathogenic variants predisposing to prostate cancer, we conducted a familial case-control association study using both genome-wide single-allele and identity-by-descent analytic approaches.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Transcription Regulation of Flagellins: A Structural Perspective.

Biochemistry

January 2025

Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.

Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!