Synthesis and antimicrobial activity evaluation of pyrazole derivatives containing the imidazo[2,1-b][1,3,4]thiadiazole moiety.

Arch Pharm (Weinheim)

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.

Published: August 2023

Four series of novel pyrazole derivatives (compounds 17a-m, 18a-m, 19a-g, and 20a-g) were synthesized, and their antibacterial and antifungal activities were evaluated. Most of the target compounds (17a-m, 18k-m, and 19b-g) showed strong antifungal activity and high selectivity relative to both Gram-positive and Gram-negative bacteria. Among them, compounds 17l (minimum inhibitory concentration [MIC] = 0.25 µg/mL) and 17m (MIC = 0.25 µg/mL) showed the strongest antifungal activity, being 2- and 4-fold more active than the positive controls gatifloxacin and fluconazole, respectively. In particular, compound 17l showed little cytotoxicity against human LO2 cells and did not exhibit hemolysis at ultrahigh concentrations, as did the positive control compounds gatifloxacin and fluconazole. These results indicate that these compounds are valuable for further development as antifungal agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.202300110DOI Listing

Publication Analysis

Top Keywords

pyrazole derivatives
8
compounds 17a-m
8
antifungal activity
8
gatifloxacin fluconazole
8
compounds
5
synthesis antimicrobial
4
antimicrobial activity
4
activity evaluation
4
evaluation pyrazole
4
derivatives imidazo[21-b][134]thiadiazole
4

Similar Publications

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods for the synthesis of five new representatives of 6-bromoindole derivatives-potential inhibitors of bacterial cystathionine-γ-lyase-namely potassium 3-amino-5-((6-bromoindolyl)methyl)thiophene-2-carboxylate () and its 6-bromoindazole analogs ( and ), along with two 6-broindazole analogs of the parent compound .

View Article and Find Full Text PDF

Heterocyclic compounds, especially those containing the pyrazole moiety, are highly significant in organic chemistry and possess remarkable and diverse biological properties. The 5-aminopyrazole derivatives are key starting materials for the synthesis of numerous bioactive compounds such as pyrazolopyridine, pyrazolopyrimidine, pyrazoloquinazoline, and pyrazolotriazine derivatives. Many compounds inspired by the 5-aminopyrazole derivatives possess a wide spectrum of biological activities and medicinal applications such as antioxidants, anticancer agents, enzyme inhibitors, antimicrobials, and anti-tuberculosis activities.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!