Nonagricultural emissions enhance dimethylamine and modulate urban atmospheric nucleation.

Sci Bull (Beijing)

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China. Electronic address:

Published: July 2023

Gas-phase dimethylamine (DMA) has recently been identified as one of the most important vapors to initiate new particle formation (NPF), even in China's polluted atmosphere. Nevertheless, there remains a fundamental need for understanding the atmospheric life cycle of DMA, particularly in urban areas. Here we pioneered large-scale mobile observations of the DMA concentrations within cities and across two pan-region transects of north-to-south (∼700 km) and west-to-east (∼2000 km) in China. Unexpectedly, DMA concentrations (mean ± 1σ) in South China with scattered croplands (0.018 ± 0.010 ppbv, 1 ppbv=10 L/L) were over three times higher than those in the north with contiguous croplands (0.005 ± 0.001 ppbv), suggesting that nonagricultural activities may be an important source of DMA. Particularly in non-rural regions, incidental pulsed industrial emissions led to some of the highest DMA concentration levels in the world (>2.3 ppbv). Besides, in highly urbanized areas of Shanghai, supported by direct source-emission measurements, the spatial pattern of DMA was generally correlated with population (R = 0.31) due to associated residential emissions rather than vehicular emissions. Chemical transport simulations further show that in the most populated regions of Shanghai, residential DMA emissions can contribute for up to 78% of particle number concentrations. Shanghai is a case study for populous megacities, and the impacts of nonagricultural emissions on local DMA concentration and nucleation are likely similar for other major urban regions globally.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.05.033DOI Listing

Publication Analysis

Top Keywords

dma
9
nonagricultural emissions
8
dma concentrations
8
dma concentration
8
emissions
5
emissions enhance
4
enhance dimethylamine
4
dimethylamine modulate
4
modulate urban
4
urban atmospheric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!